Precalculus Examples
B=⎡⎢⎣12−15432−48⎤⎥⎦
Step 1
Consider the corresponding sign chart.
⎡⎢⎣+−+−+−+−+⎤⎥⎦
Step 2
Step 2.1
Calculate the minor for element b11.
Step 2.1.1
The minor for b11 is the determinant with row 1 and column 1 deleted.
∣∣∣43−48∣∣∣
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
b11=4⋅8−(−4⋅3)
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 4 by 8.
b11=32−(−4⋅3)
Step 2.1.2.2.1.2
Multiply −(−4⋅3).
Step 2.1.2.2.1.2.1
Multiply −4 by 3.
b11=32−−12
Step 2.1.2.2.1.2.2
Multiply −1 by −12.
b11=32+12
b11=32+12
b11=32+12
Step 2.1.2.2.2
Add 32 and 12.
b11=44
b11=44
b11=44
b11=44
Step 2.2
Calculate the minor for element b12.
Step 2.2.1
The minor for b12 is the determinant with row 1 and column 2 deleted.
∣∣∣5328∣∣∣
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
b12=5⋅8−2⋅3
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply 5 by 8.
b12=40−2⋅3
Step 2.2.2.2.1.2
Multiply −2 by 3.
b12=40−6
b12=40−6
Step 2.2.2.2.2
Subtract 6 from 40.
b12=34
b12=34
b12=34
b12=34
Step 2.3
Calculate the minor for element b13.
Step 2.3.1
The minor for b13 is the determinant with row 1 and column 3 deleted.
∣∣∣542−4∣∣∣
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
b13=5⋅−4−2⋅4
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Multiply 5 by −4.
b13=−20−2⋅4
Step 2.3.2.2.1.2
Multiply −2 by 4.
b13=−20−8
b13=−20−8
Step 2.3.2.2.2
Subtract 8 from −20.
b13=−28
b13=−28
b13=−28
b13=−28
Step 2.4
Calculate the minor for element b21.
Step 2.4.1
The minor for b21 is the determinant with row 2 and column 1 deleted.
∣∣∣2−1−48∣∣∣
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
b21=2⋅8−(−4⋅−1)
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 2 by 8.
b21=16−(−4⋅−1)
Step 2.4.2.2.1.2
Multiply −(−4⋅−1).
Step 2.4.2.2.1.2.1
Multiply −4 by −1.
b21=16−1⋅4
Step 2.4.2.2.1.2.2
Multiply −1 by 4.
b21=16−4
b21=16−4
b21=16−4
Step 2.4.2.2.2
Subtract 4 from 16.
b21=12
b21=12
b21=12
b21=12
Step 2.5
Calculate the minor for element b22.
Step 2.5.1
The minor for b22 is the determinant with row 2 and column 2 deleted.
∣∣∣1−128∣∣∣
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
b22=1⋅8−2⋅−1
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply 8 by 1.
b22=8−2⋅−1
Step 2.5.2.2.1.2
Multiply −2 by −1.
b22=8+2
b22=8+2
Step 2.5.2.2.2
Add 8 and 2.
b22=10
b22=10
b22=10
b22=10
Step 2.6
Calculate the minor for element b23.
Step 2.6.1
The minor for b23 is the determinant with row 2 and column 3 deleted.
∣∣∣122−4∣∣∣
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
b23=1⋅−4−2⋅2
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Multiply −4 by 1.
b23=−4−2⋅2
Step 2.6.2.2.1.2
Multiply −2 by 2.
b23=−4−4
b23=−4−4
Step 2.6.2.2.2
Subtract 4 from −4.
b23=−8
b23=−8
b23=−8
b23=−8
Step 2.7
Calculate the minor for element b31.
Step 2.7.1
The minor for b31 is the determinant with row 3 and column 1 deleted.
∣∣∣2−143∣∣∣
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
b31=2⋅3−4⋅−1
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 2 by 3.
b31=6−4⋅−1
Step 2.7.2.2.1.2
Multiply −4 by −1.
b31=6+4
b31=6+4
Step 2.7.2.2.2
Add 6 and 4.
b31=10
b31=10
b31=10
b31=10
Step 2.8
Calculate the minor for element b32.
Step 2.8.1
The minor for b32 is the determinant with row 3 and column 2 deleted.
∣∣∣1−153∣∣∣
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
b32=1⋅3−5⋅−1
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply 3 by 1.
b32=3−5⋅−1
Step 2.8.2.2.1.2
Multiply −5 by −1.
b32=3+5
b32=3+5
Step 2.8.2.2.2
Add 3 and 5.
b32=8
b32=8
b32=8
b32=8
Step 2.9
Calculate the minor for element b33.
Step 2.9.1
The minor for b33 is the determinant with row 3 and column 3 deleted.
∣∣∣1254∣∣∣
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
b33=1⋅4−5⋅2
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Multiply 4 by 1.
b33=4−5⋅2
Step 2.9.2.2.1.2
Multiply −5 by 2.
b33=4−10
b33=4−10
Step 2.9.2.2.2
Subtract 10 from 4.
b33=−6
b33=−6
b33=−6
b33=−6
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the − positions on the sign chart.
⎡⎢⎣44−34−28−1210810−8−6⎤⎥⎦
⎡⎢⎣44−34−28−1210810−8−6⎤⎥⎦
Step 3
Transpose the matrix by switching its rows to columns.
⎡⎢⎣44−1210−3410−8−288−6⎤⎥⎦