Precalculus Examples

B=121543248
Step 1
Consider the corresponding sign chart.
+++++
Step 2
Use the sign chart and the given matrix to find the cofactor of each element.
Tap for more steps...
Step 2.1
Calculate the minor for element b11.
Tap for more steps...
Step 2.1.1
The minor for b11 is the determinant with row 1 and column 1 deleted.
4348
Step 2.1.2
Evaluate the determinant.
Tap for more steps...
Step 2.1.2.1
The determinant of a 2×2 matrix can be found using the formula abcd=adcb.
b11=48(43)
Step 2.1.2.2
Simplify the determinant.
Tap for more steps...
Step 2.1.2.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.2.1.1
Multiply 4 by 8.
b11=32(43)
Step 2.1.2.2.1.2
Multiply (43).
Tap for more steps...
Step 2.1.2.2.1.2.1
Multiply 4 by 3.
b11=3212
Step 2.1.2.2.1.2.2
Multiply 1 by 12.
b11=32+12
b11=32+12
b11=32+12
Step 2.1.2.2.2
Add 32 and 12.
b11=44
b11=44
b11=44
b11=44
Step 2.2
Calculate the minor for element b12.
Tap for more steps...
Step 2.2.1
The minor for b12 is the determinant with row 1 and column 2 deleted.
5328
Step 2.2.2
Evaluate the determinant.
Tap for more steps...
Step 2.2.2.1
The determinant of a 2×2 matrix can be found using the formula abcd=adcb.
b12=5823
Step 2.2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.2.1.1
Multiply 5 by 8.
b12=4023
Step 2.2.2.2.1.2
Multiply 2 by 3.
b12=406
b12=406
Step 2.2.2.2.2
Subtract 6 from 40.
b12=34
b12=34
b12=34
b12=34
Step 2.3
Calculate the minor for element b13.
Tap for more steps...
Step 2.3.1
The minor for b13 is the determinant with row 1 and column 3 deleted.
5424
Step 2.3.2
Evaluate the determinant.
Tap for more steps...
Step 2.3.2.1
The determinant of a 2×2 matrix can be found using the formula abcd=adcb.
b13=5424
Step 2.3.2.2
Simplify the determinant.
Tap for more steps...
Step 2.3.2.2.1
Simplify each term.
Tap for more steps...
Step 2.3.2.2.1.1
Multiply 5 by 4.
b13=2024
Step 2.3.2.2.1.2
Multiply 2 by 4.
b13=208
b13=208
Step 2.3.2.2.2
Subtract 8 from 20.
b13=28
b13=28
b13=28
b13=28
Step 2.4
Calculate the minor for element b21.
Tap for more steps...
Step 2.4.1
The minor for b21 is the determinant with row 2 and column 1 deleted.
2148
Step 2.4.2
Evaluate the determinant.
Tap for more steps...
Step 2.4.2.1
The determinant of a 2×2 matrix can be found using the formula abcd=adcb.
b21=28(41)
Step 2.4.2.2
Simplify the determinant.
Tap for more steps...
Step 2.4.2.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.2.1.1
Multiply 2 by 8.
b21=16(41)
Step 2.4.2.2.1.2
Multiply (41).
Tap for more steps...
Step 2.4.2.2.1.2.1
Multiply 4 by 1.
b21=1614
Step 2.4.2.2.1.2.2
Multiply 1 by 4.
b21=164
b21=164
b21=164
Step 2.4.2.2.2
Subtract 4 from 16.
b21=12
b21=12
b21=12
b21=12
Step 2.5
Calculate the minor for element b22.
Tap for more steps...
Step 2.5.1
The minor for b22 is the determinant with row 2 and column 2 deleted.
1128
Step 2.5.2
Evaluate the determinant.
Tap for more steps...
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula abcd=adcb.
b22=1821
Step 2.5.2.2
Simplify the determinant.
Tap for more steps...
Step 2.5.2.2.1
Simplify each term.
Tap for more steps...
Step 2.5.2.2.1.1
Multiply 8 by 1.
b22=821
Step 2.5.2.2.1.2
Multiply 2 by 1.
b22=8+2
b22=8+2
Step 2.5.2.2.2
Add 8 and 2.
b22=10
b22=10
b22=10
b22=10
Step 2.6
Calculate the minor for element b23.
Tap for more steps...
Step 2.6.1
The minor for b23 is the determinant with row 2 and column 3 deleted.
1224
Step 2.6.2
Evaluate the determinant.
Tap for more steps...
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula abcd=adcb.
b23=1422
Step 2.6.2.2
Simplify the determinant.
Tap for more steps...
Step 2.6.2.2.1
Simplify each term.
Tap for more steps...
Step 2.6.2.2.1.1
Multiply 4 by 1.
b23=422
Step 2.6.2.2.1.2
Multiply 2 by 2.
b23=44
b23=44
Step 2.6.2.2.2
Subtract 4 from 4.
b23=8
b23=8
b23=8
b23=8
Step 2.7
Calculate the minor for element b31.
Tap for more steps...
Step 2.7.1
The minor for b31 is the determinant with row 3 and column 1 deleted.
2143
Step 2.7.2
Evaluate the determinant.
Tap for more steps...
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula abcd=adcb.
b31=2341
Step 2.7.2.2
Simplify the determinant.
Tap for more steps...
Step 2.7.2.2.1
Simplify each term.
Tap for more steps...
Step 2.7.2.2.1.1
Multiply 2 by 3.
b31=641
Step 2.7.2.2.1.2
Multiply 4 by 1.
b31=6+4
b31=6+4
Step 2.7.2.2.2
Add 6 and 4.
b31=10
b31=10
b31=10
b31=10
Step 2.8
Calculate the minor for element b32.
Tap for more steps...
Step 2.8.1
The minor for b32 is the determinant with row 3 and column 2 deleted.
1153
Step 2.8.2
Evaluate the determinant.
Tap for more steps...
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula abcd=adcb.
b32=1351
Step 2.8.2.2
Simplify the determinant.
Tap for more steps...
Step 2.8.2.2.1
Simplify each term.
Tap for more steps...
Step 2.8.2.2.1.1
Multiply 3 by 1.
b32=351
Step 2.8.2.2.1.2
Multiply 5 by 1.
b32=3+5
b32=3+5
Step 2.8.2.2.2
Add 3 and 5.
b32=8
b32=8
b32=8
b32=8
Step 2.9
Calculate the minor for element b33.
Tap for more steps...
Step 2.9.1
The minor for b33 is the determinant with row 3 and column 3 deleted.
1254
Step 2.9.2
Evaluate the determinant.
Tap for more steps...
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula abcd=adcb.
b33=1452
Step 2.9.2.2
Simplify the determinant.
Tap for more steps...
Step 2.9.2.2.1
Simplify each term.
Tap for more steps...
Step 2.9.2.2.1.1
Multiply 4 by 1.
b33=452
Step 2.9.2.2.1.2
Multiply 5 by 2.
b33=410
b33=410
Step 2.9.2.2.2
Subtract 10 from 4.
b33=6
b33=6
b33=6
b33=6
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the positions on the sign chart.
443428121081086
443428121081086
Step 3
Transpose the matrix by switching its rows to columns.
441210341082886
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 x2  12  π  xdx  
AmazonPay