Precalculus Examples
f(x)=2x2+3x-4f(x)=2x2+3x−4
Step 1
The minimum of a quadratic function occurs at x=-b2ax=−b2a. If aa is positive, the minimum value of the function is f(-b2a)f(−b2a).
fminfminx=ax2+bx+cx=ax2+bx+c occurs at x=-b2ax=−b2a
Step 2
Step 2.1
Substitute in the values of aa and bb.
x=-32(2)x=−32(2)
Step 2.2
Remove parentheses.
x=-32(2)x=−32(2)
Step 2.3
Multiply 22 by 22.
x=-34x=−34
x=-34x=−34
Step 3
Step 3.1
Replace the variable xx with -34−34 in the expression.
f(-34)=2(-34)2+3(-34)-4f(−34)=2(−34)2+3(−34)−4
Step 3.2
Simplify the result.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 3.2.1.1.1
Apply the product rule to -34−34.
f(-34)=2((-1)2(34)2)+3(-34)-4f(−34)=2((−1)2(34)2)+3(−34)−4
Step 3.2.1.1.2
Apply the product rule to 3434.
f(-34)=2((-1)2(3242))+3(-34)-4f(−34)=2((−1)2(3242))+3(−34)−4
f(-34)=2((-1)2(3242))+3(-34)-4f(−34)=2((−1)2(3242))+3(−34)−4
Step 3.2.1.2
Raise -1−1 to the power of 22.
f(-34)=2(1(3242))+3(-34)-4f(−34)=2(1(3242))+3(−34)−4
Step 3.2.1.3
Multiply 32423242 by 11.
f(-34)=2(3242)+3(-34)-4f(−34)=2(3242)+3(−34)−4
Step 3.2.1.4
Raise 33 to the power of 22.
f(-34)=2(942)+3(-34)-4f(−34)=2(942)+3(−34)−4
Step 3.2.1.5
Raise 44 to the power of 22.
f(-34)=2(916)+3(-34)-4f(−34)=2(916)+3(−34)−4
Step 3.2.1.6
Cancel the common factor of 22.
Step 3.2.1.6.1
Factor 22 out of 1616.
f(-34)=2(92(8))+3(-34)-4f(−34)=2(92(8))+3(−34)−4
Step 3.2.1.6.2
Cancel the common factor.
f(-34)=2(92⋅8)+3(-34)-4
Step 3.2.1.6.3
Rewrite the expression.
f(-34)=98+3(-34)-4
f(-34)=98+3(-34)-4
Step 3.2.1.7
Multiply 3(-34).
Step 3.2.1.7.1
Multiply -1 by 3.
f(-34)=98-3(34)-4
Step 3.2.1.7.2
Combine -3 and 34.
f(-34)=98+-3⋅34-4
Step 3.2.1.7.3
Multiply -3 by 3.
f(-34)=98+-94-4
f(-34)=98+-94-4
Step 3.2.1.8
Move the negative in front of the fraction.
f(-34)=98-94-4
f(-34)=98-94-4
Step 3.2.2
Find the common denominator.
Step 3.2.2.1
Multiply 94 by 22.
f(-34)=98-(94⋅22)-4
Step 3.2.2.2
Multiply 94 by 22.
f(-34)=98-9⋅24⋅2-4
Step 3.2.2.3
Write -4 as a fraction with denominator 1.
f(-34)=98-9⋅24⋅2+-41
Step 3.2.2.4
Multiply -41 by 88.
f(-34)=98-9⋅24⋅2+-41⋅88
Step 3.2.2.5
Multiply -41 by 88.
f(-34)=98-9⋅24⋅2+-4⋅88
Step 3.2.2.6
Reorder the factors of 4⋅2.
f(-34)=98-9⋅22⋅4+-4⋅88
Step 3.2.2.7
Multiply 2 by 4.
f(-34)=98-9⋅28+-4⋅88
f(-34)=98-9⋅28+-4⋅88
Step 3.2.3
Combine the numerators over the common denominator.
f(-34)=9-9⋅2-4⋅88
Step 3.2.4
Simplify each term.
Step 3.2.4.1
Multiply -9 by 2.
f(-34)=9-18-4⋅88
Step 3.2.4.2
Multiply -4 by 8.
f(-34)=9-18-328
f(-34)=9-18-328
Step 3.2.5
Simplify the expression.
Step 3.2.5.1
Subtract 18 from 9.
f(-34)=-9-328
Step 3.2.5.2
Subtract 32 from -9.
f(-34)=-418
Step 3.2.5.3
Move the negative in front of the fraction.
f(-34)=-418
f(-34)=-418
Step 3.2.6
The final answer is -418.
-418
-418
-418
Step 4
Use the x and y values to find where the minimum occurs.
(-34,-418)
Step 5