Precalculus Examples
f(θ)=sin(4θ)f(θ)=sin(4θ)
Step 1
Use the form asin(bx-c)+dasin(bx−c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=1a=1
b=4b=4
c=0c=0
d=0d=0
Step 2
Find the amplitude |a||a|.
Amplitude: 11
Step 3
Step 3.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.2
Replace bb with 44 in the formula for period.
2π|4|2π|4|
Step 3.3
The absolute value is the distance between a number and zero. The distance between 00 and 44 is 44.
2π42π4
Step 3.4
Cancel the common factor of 22 and 44.
Step 3.4.1
Factor 22 out of 2π2π.
2(π)42(π)4
Step 3.4.2
Cancel the common factors.
Step 3.4.2.1
Factor 22 out of 44.
2π2⋅22π2⋅2
Step 3.4.2.2
Cancel the common factor.
2π2⋅22π2⋅2
Step 3.4.2.3
Rewrite the expression.
π2π2
π2π2
π2π2
π2π2
Step 4
Step 4.1
The phase shift of the function can be calculated from cbcb.
Phase Shift: cbcb
Step 4.2
Replace the values of cc and bb in the equation for phase shift.
Phase Shift: 0404
Step 4.3
Divide 00 by 44.
Phase Shift: 00
Phase Shift: 00
Step 5
List the properties of the trigonometric function.
Amplitude: 11
Period: π2π2
Phase Shift: None
Vertical Shift: None
Step 6
Step 6.1
Find the point at x=0x=0.
Step 6.1.1
Replace the variable xx with 00 in the expression.
f(0)=sin(4(0))f(0)=sin(4(0))
Step 6.1.2
Simplify the result.
Step 6.1.2.1
Multiply 44 by 00.
f(0)=sin(0)f(0)=sin(0)
Step 6.1.2.2
The exact value of sin(0)sin(0) is 00.
f(0)=0f(0)=0
Step 6.1.2.3
The final answer is 00.
00
00
00
Step 6.2
Find the point at x=π8x=π8.
Step 6.2.1
Replace the variable xx with π8π8 in the expression.
f(π8)=sin(4(π8))f(π8)=sin(4(π8))
Step 6.2.2
Simplify the result.
Step 6.2.2.1
Cancel the common factor of 44.
Step 6.2.2.1.1
Factor 44 out of 88.
f(π8)=sin(4(π4(2)))f(π8)=sin(4(π4(2)))
Step 6.2.2.1.2
Cancel the common factor.
f(π8)=sin(4(π4⋅2))f(π8)=sin(4(π4⋅2))
Step 6.2.2.1.3
Rewrite the expression.
f(π8)=sin(π2)f(π8)=sin(π2)
f(π8)=sin(π2)f(π8)=sin(π2)
Step 6.2.2.2
The exact value of sin(π2)sin(π2) is 11.
f(π8)=1f(π8)=1
Step 6.2.2.3
The final answer is 11.
11
11
11
Step 6.3
Find the point at x=π4x=π4.
Step 6.3.1
Replace the variable xx with π4π4 in the expression.
f(π4)=sin(4(π4))f(π4)=sin(4(π4))
Step 6.3.2
Simplify the result.
Step 6.3.2.1
Cancel the common factor of 44.
Step 6.3.2.1.1
Cancel the common factor.
f(π4)=sin(4(π4))f(π4)=sin(4(π4))
Step 6.3.2.1.2
Rewrite the expression.
f(π4)=sin(π)f(π4)=sin(π)
f(π4)=sin(π)f(π4)=sin(π)
Step 6.3.2.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
f(π4)=sin(0)f(π4)=sin(0)
Step 6.3.2.3
The exact value of sin(0)sin(0) is 00.
f(π4)=0f(π4)=0
Step 6.3.2.4
The final answer is 00.
00
00
00
Step 6.4
Find the point at x=3π8x=3π8.
Step 6.4.1
Replace the variable xx with 3π83π8 in the expression.
f(3π8)=sin(4(3π8))f(3π8)=sin(4(3π8))
Step 6.4.2
Simplify the result.
Step 6.4.2.1
Cancel the common factor of 44.
Step 6.4.2.1.1
Factor 44 out of 88.
f(3π8)=sin(4(3π4(2)))f(3π8)=sin(4(3π4(2)))
Step 6.4.2.1.2
Cancel the common factor.
f(3π8)=sin(4(3π4⋅2))f(3π8)=sin(4(3π4⋅2))
Step 6.4.2.1.3
Rewrite the expression.
f(3π8)=sin(3π2)f(3π8)=sin(3π2)
f(3π8)=sin(3π2)f(3π8)=sin(3π2)
Step 6.4.2.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
f(3π8)=-sin(π2)f(3π8)=−sin(π2)
Step 6.4.2.3
The exact value of sin(π2)sin(π2) is 11.
f(3π8)=-1⋅1f(3π8)=−1⋅1
Step 6.4.2.4
Multiply -1−1 by 11.
f(3π8)=-1f(3π8)=−1
Step 6.4.2.5
The final answer is -1−1.
-1−1
-1−1
-1−1
Step 6.5
Find the point at x=π2x=π2.
Step 6.5.1
Replace the variable xx with π2π2 in the expression.
f(π2)=sin(4(π2))f(π2)=sin(4(π2))
Step 6.5.2
Simplify the result.
Step 6.5.2.1
Cancel the common factor of 22.
Step 6.5.2.1.1
Factor 22 out of 44.
f(π2)=sin(2(2)(π2))f(π2)=sin(2(2)(π2))
Step 6.5.2.1.2
Cancel the common factor.
f(π2)=sin(2⋅(2(π2)))f(π2)=sin(2⋅(2(π2)))
Step 6.5.2.1.3
Rewrite the expression.
f(π2)=sin(2π)f(π2)=sin(2π)
f(π2)=sin(2π)f(π2)=sin(2π)
Step 6.5.2.2
Subtract full rotations of 2π2π until the angle is greater than or equal to 00 and less than 2π2π.
f(π2)=sin(0)f(π2)=sin(0)
Step 6.5.2.3
The exact value of sin(0)sin(0) is 00.
f(π2)=0f(π2)=0
Step 6.5.2.4
The final answer is 00.
00
00
00
Step 6.6
List the points in a table.
xf(x)00π81π403π8-1π20xf(x)00π81π403π8−1π20
xf(x)00π81π403π8-1π20xf(x)00π81π403π8−1π20
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Amplitude: 11
Period: π2π2
Phase Shift: None
Vertical Shift: None
xf(x)00π81π403π8-1π20xf(x)00π81π403π8−1π20
Step 8