Precalculus Examples
f(x)=7x2+5x-4f(x)=7x2+5x−4
Step 1
Consider the difference quotient formula.
f(x+h)-f(x)hf(x+h)−f(x)h
Step 2
Step 2.1
Evaluate the function at x=x+hx=x+h.
Step 2.1.1
Replace the variable xx with x+hx+h in the expression.
f(x+h)=7(x+h)2+5(x+h)-4f(x+h)=7(x+h)2+5(x+h)−4
Step 2.1.2
Simplify the result.
Step 2.1.2.1
Simplify each term.
Step 2.1.2.1.1
Rewrite (x+h)2(x+h)2 as (x+h)(x+h)(x+h)(x+h).
f(x+h)=7((x+h)(x+h))+5(x+h)-4f(x+h)=7((x+h)(x+h))+5(x+h)−4
Step 2.1.2.1.2
Expand (x+h)(x+h)(x+h)(x+h) using the FOIL Method.
Step 2.1.2.1.2.1
Apply the distributive property.
f(x+h)=7(x(x+h)+h(x+h))+5(x+h)-4f(x+h)=7(x(x+h)+h(x+h))+5(x+h)−4
Step 2.1.2.1.2.2
Apply the distributive property.
f(x+h)=7(x⋅x+xh+h(x+h))+5(x+h)-4f(x+h)=7(x⋅x+xh+h(x+h))+5(x+h)−4
Step 2.1.2.1.2.3
Apply the distributive property.
f(x+h)=7(x⋅x+xh+hx+h⋅h)+5(x+h)-4f(x+h)=7(x⋅x+xh+hx+h⋅h)+5(x+h)−4
f(x+h)=7(x⋅x+xh+hx+h⋅h)+5(x+h)-4f(x+h)=7(x⋅x+xh+hx+h⋅h)+5(x+h)−4
Step 2.1.2.1.3
Simplify and combine like terms.
Step 2.1.2.1.3.1
Simplify each term.
Step 2.1.2.1.3.1.1
Multiply xx by xx.
f(x+h)=7(x2+xh+hx+h⋅h)+5(x+h)-4f(x+h)=7(x2+xh+hx+h⋅h)+5(x+h)−4
Step 2.1.2.1.3.1.2
Multiply hh by hh.
f(x+h)=7(x2+xh+hx+h2)+5(x+h)-4f(x+h)=7(x2+xh+hx+h2)+5(x+h)−4
f(x+h)=7(x2+xh+hx+h2)+5(x+h)-4f(x+h)=7(x2+xh+hx+h2)+5(x+h)−4
Step 2.1.2.1.3.2
Add xhxh and hxhx.
Step 2.1.2.1.3.2.1
Reorder xx and hh.
f(x+h)=7(x2+hx+hx+h2)+5(x+h)-4f(x+h)=7(x2+hx+hx+h2)+5(x+h)−4
Step 2.1.2.1.3.2.2
Add hxhx and hxhx.
f(x+h)=7(x2+2hx+h2)+5(x+h)-4f(x+h)=7(x2+2hx+h2)+5(x+h)−4
f(x+h)=7(x2+2hx+h2)+5(x+h)-4f(x+h)=7(x2+2hx+h2)+5(x+h)−4
f(x+h)=7(x2+2hx+h2)+5(x+h)-4f(x+h)=7(x2+2hx+h2)+5(x+h)−4
Step 2.1.2.1.4
Apply the distributive property.
f(x+h)=7x2+7(2hx)+7h2+5(x+h)-4f(x+h)=7x2+7(2hx)+7h2+5(x+h)−4
Step 2.1.2.1.5
Multiply 22 by 77.
f(x+h)=7x2+14(hx)+7h2+5(x+h)-4f(x+h)=7x2+14(hx)+7h2+5(x+h)−4
Step 2.1.2.1.6
Apply the distributive property.
f(x+h)=7x2+14hx+7h2+5x+5h-4f(x+h)=7x2+14hx+7h2+5x+5h−4
f(x+h)=7x2+14hx+7h2+5x+5h-4f(x+h)=7x2+14hx+7h2+5x+5h−4
Step 2.1.2.2
The final answer is 7x2+14hx+7h2+5x+5h-47x2+14hx+7h2+5x+5h−4.
7x2+14hx+7h2+5x+5h-47x2+14hx+7h2+5x+5h−4
7x2+14hx+7h2+5x+5h-47x2+14hx+7h2+5x+5h−4
7x2+14hx+7h2+5x+5h-47x2+14hx+7h2+5x+5h−4
Step 2.2
Reorder.
Step 2.2.1
Move 5x5x.
7x2+14hx+7h2+5h+5x-47x2+14hx+7h2+5h+5x−4
Step 2.2.2
Move 7x27x2.
14hx+7h2+7x2+5h+5x-414hx+7h2+7x2+5h+5x−4
Step 2.2.3
Reorder 14hx14hx and 7h27h2.
7h2+14hx+7x2+5h+5x-47h2+14hx+7x2+5h+5x−4
7h2+14hx+7x2+5h+5x-47h2+14hx+7x2+5h+5x−4
Step 2.3
Find the components of the definition.
f(x+h)=7h2+14hx+7x2+5h+5x-4f(x+h)=7h2+14hx+7x2+5h+5x−4
f(x)=7x2+5x-4f(x)=7x2+5x−4
f(x+h)=7h2+14hx+7x2+5h+5x-4f(x+h)=7h2+14hx+7x2+5h+5x−4
f(x)=7x2+5x-4f(x)=7x2+5x−4
Step 3
Plug in the components.
f(x+h)-f(x)h=7h2+14hx+7x2+5h+5x-4-(7x2+5x-4)hf(x+h)−f(x)h=7h2+14hx+7x2+5h+5x−4−(7x2+5x−4)h
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Apply the distributive property.
7h2+14hx+7x2+5h+5x-4-(7x2)-(5x)--4h7h2+14hx+7x2+5h+5x−4−(7x2)−(5x)−−4h
Step 4.1.2
Simplify.
Step 4.1.2.1
Multiply 7 by -1.
7h2+14hx+7x2+5h+5x-4-7x2-(5x)--4h
Step 4.1.2.2
Multiply 5 by -1.
7h2+14hx+7x2+5h+5x-4-7x2-5x--4h
Step 4.1.2.3
Multiply -1 by -4.
7h2+14hx+7x2+5h+5x-4-7x2-5x+4h
7h2+14hx+7x2+5h+5x-4-7x2-5x+4h
Step 4.1.3
Subtract 7x2 from 7x2.
7h2+14hx+5h+5x-4+0-5x+4h
Step 4.1.4
Add 7h2 and 0.
7h2+14hx+5h+5x-4-5x+4h
Step 4.1.5
Subtract 5x from 5x.
7h2+14hx+5h+0-4+4h
Step 4.1.6
Add 7h2 and 0.
7h2+14hx+5h-4+4h
Step 4.1.7
Add -4 and 4.
7h2+14hx+5h+0h
Step 4.1.8
Add 7h2+14hx+5h and 0.
7h2+14hx+5hh
Step 4.1.9
Factor h out of 7h2+14hx+5h.
Step 4.1.9.1
Factor h out of 7h2.
h(7h)+14hx+5hh
Step 4.1.9.2
Factor h out of 14hx.
h(7h)+h(14x)+5hh
Step 4.1.9.3
Factor h out of 5h.
h(7h)+h(14x)+h⋅5h
Step 4.1.9.4
Factor h out of h(7h)+h(14x).
h(7h+14x)+h⋅5h
Step 4.1.9.5
Factor h out of h(7h+14x)+h⋅5.
h(7h+14x+5)h
h(7h+14x+5)h
h(7h+14x+5)h
Step 4.2
Reduce the expression by cancelling the common factors.
Step 4.2.1
Cancel the common factor of h.
Step 4.2.1.1
Cancel the common factor.
h(7h+14x+5)h
Step 4.2.1.2
Divide 7h+14x+5 by 1.
7h+14x+5
7h+14x+5
Step 4.2.2
Reorder 7h and 14x.
14x+7h+5
14x+7h+5
14x+7h+5
Step 5