Precalculus Examples

Find the Difference Quotient
f(x)=7x2+5x-4f(x)=7x2+5x4
Step 1
Consider the difference quotient formula.
f(x+h)-f(x)hf(x+h)f(x)h
Step 2
Find the components of the definition.
Tap for more steps...
Step 2.1
Evaluate the function at x=x+hx=x+h.
Tap for more steps...
Step 2.1.1
Replace the variable xx with x+hx+h in the expression.
f(x+h)=7(x+h)2+5(x+h)-4f(x+h)=7(x+h)2+5(x+h)4
Step 2.1.2
Simplify the result.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Rewrite (x+h)2(x+h)2 as (x+h)(x+h)(x+h)(x+h).
f(x+h)=7((x+h)(x+h))+5(x+h)-4f(x+h)=7((x+h)(x+h))+5(x+h)4
Step 2.1.2.1.2
Expand (x+h)(x+h)(x+h)(x+h) using the FOIL Method.
Tap for more steps...
Step 2.1.2.1.2.1
Apply the distributive property.
f(x+h)=7(x(x+h)+h(x+h))+5(x+h)-4f(x+h)=7(x(x+h)+h(x+h))+5(x+h)4
Step 2.1.2.1.2.2
Apply the distributive property.
f(x+h)=7(xx+xh+h(x+h))+5(x+h)-4f(x+h)=7(xx+xh+h(x+h))+5(x+h)4
Step 2.1.2.1.2.3
Apply the distributive property.
f(x+h)=7(xx+xh+hx+hh)+5(x+h)-4f(x+h)=7(xx+xh+hx+hh)+5(x+h)4
f(x+h)=7(xx+xh+hx+hh)+5(x+h)-4f(x+h)=7(xx+xh+hx+hh)+5(x+h)4
Step 2.1.2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.1.2.1.3.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.3.1.1
Multiply xx by xx.
f(x+h)=7(x2+xh+hx+hh)+5(x+h)-4f(x+h)=7(x2+xh+hx+hh)+5(x+h)4
Step 2.1.2.1.3.1.2
Multiply hh by hh.
f(x+h)=7(x2+xh+hx+h2)+5(x+h)-4f(x+h)=7(x2+xh+hx+h2)+5(x+h)4
f(x+h)=7(x2+xh+hx+h2)+5(x+h)-4f(x+h)=7(x2+xh+hx+h2)+5(x+h)4
Step 2.1.2.1.3.2
Add xhxh and hxhx.
Tap for more steps...
Step 2.1.2.1.3.2.1
Reorder xx and hh.
f(x+h)=7(x2+hx+hx+h2)+5(x+h)-4f(x+h)=7(x2+hx+hx+h2)+5(x+h)4
Step 2.1.2.1.3.2.2
Add hxhx and hxhx.
f(x+h)=7(x2+2hx+h2)+5(x+h)-4f(x+h)=7(x2+2hx+h2)+5(x+h)4
f(x+h)=7(x2+2hx+h2)+5(x+h)-4f(x+h)=7(x2+2hx+h2)+5(x+h)4
f(x+h)=7(x2+2hx+h2)+5(x+h)-4f(x+h)=7(x2+2hx+h2)+5(x+h)4
Step 2.1.2.1.4
Apply the distributive property.
f(x+h)=7x2+7(2hx)+7h2+5(x+h)-4f(x+h)=7x2+7(2hx)+7h2+5(x+h)4
Step 2.1.2.1.5
Multiply 22 by 77.
f(x+h)=7x2+14(hx)+7h2+5(x+h)-4f(x+h)=7x2+14(hx)+7h2+5(x+h)4
Step 2.1.2.1.6
Apply the distributive property.
f(x+h)=7x2+14hx+7h2+5x+5h-4f(x+h)=7x2+14hx+7h2+5x+5h4
f(x+h)=7x2+14hx+7h2+5x+5h-4f(x+h)=7x2+14hx+7h2+5x+5h4
Step 2.1.2.2
The final answer is 7x2+14hx+7h2+5x+5h-47x2+14hx+7h2+5x+5h4.
7x2+14hx+7h2+5x+5h-47x2+14hx+7h2+5x+5h4
7x2+14hx+7h2+5x+5h-47x2+14hx+7h2+5x+5h4
7x2+14hx+7h2+5x+5h-47x2+14hx+7h2+5x+5h4
Step 2.2
Reorder.
Tap for more steps...
Step 2.2.1
Move 5x5x.
7x2+14hx+7h2+5h+5x-47x2+14hx+7h2+5h+5x4
Step 2.2.2
Move 7x27x2.
14hx+7h2+7x2+5h+5x-414hx+7h2+7x2+5h+5x4
Step 2.2.3
Reorder 14hx14hx and 7h27h2.
7h2+14hx+7x2+5h+5x-47h2+14hx+7x2+5h+5x4
7h2+14hx+7x2+5h+5x-47h2+14hx+7x2+5h+5x4
Step 2.3
Find the components of the definition.
f(x+h)=7h2+14hx+7x2+5h+5x-4f(x+h)=7h2+14hx+7x2+5h+5x4
f(x)=7x2+5x-4f(x)=7x2+5x4
f(x+h)=7h2+14hx+7x2+5h+5x-4f(x+h)=7h2+14hx+7x2+5h+5x4
f(x)=7x2+5x-4f(x)=7x2+5x4
Step 3
Plug in the components.
f(x+h)-f(x)h=7h2+14hx+7x2+5h+5x-4-(7x2+5x-4)hf(x+h)f(x)h=7h2+14hx+7x2+5h+5x4(7x2+5x4)h
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Apply the distributive property.
7h2+14hx+7x2+5h+5x-4-(7x2)-(5x)--4h7h2+14hx+7x2+5h+5x4(7x2)(5x)4h
Step 4.1.2
Simplify.
Tap for more steps...
Step 4.1.2.1
Multiply 7 by -1.
7h2+14hx+7x2+5h+5x-4-7x2-(5x)--4h
Step 4.1.2.2
Multiply 5 by -1.
7h2+14hx+7x2+5h+5x-4-7x2-5x--4h
Step 4.1.2.3
Multiply -1 by -4.
7h2+14hx+7x2+5h+5x-4-7x2-5x+4h
7h2+14hx+7x2+5h+5x-4-7x2-5x+4h
Step 4.1.3
Subtract 7x2 from 7x2.
7h2+14hx+5h+5x-4+0-5x+4h
Step 4.1.4
Add 7h2 and 0.
7h2+14hx+5h+5x-4-5x+4h
Step 4.1.5
Subtract 5x from 5x.
7h2+14hx+5h+0-4+4h
Step 4.1.6
Add 7h2 and 0.
7h2+14hx+5h-4+4h
Step 4.1.7
Add -4 and 4.
7h2+14hx+5h+0h
Step 4.1.8
Add 7h2+14hx+5h and 0.
7h2+14hx+5hh
Step 4.1.9
Factor h out of 7h2+14hx+5h.
Tap for more steps...
Step 4.1.9.1
Factor h out of 7h2.
h(7h)+14hx+5hh
Step 4.1.9.2
Factor h out of 14hx.
h(7h)+h(14x)+5hh
Step 4.1.9.3
Factor h out of 5h.
h(7h)+h(14x)+h5h
Step 4.1.9.4
Factor h out of h(7h)+h(14x).
h(7h+14x)+h5h
Step 4.1.9.5
Factor h out of h(7h+14x)+h5.
h(7h+14x+5)h
h(7h+14x+5)h
h(7h+14x+5)h
Step 4.2
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 4.2.1
Cancel the common factor of h.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
h(7h+14x+5)h
Step 4.2.1.2
Divide 7h+14x+5 by 1.
7h+14x+5
7h+14x+5
Step 4.2.2
Reorder 7h and 14x.
14x+7h+5
14x+7h+5
14x+7h+5
Step 5
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay