Precalculus Examples

Find the Difference Quotient
f(x)=3x2+6
Step 1
Consider the difference quotient formula.
f(x+h)-f(x)h
Step 2
Find the components of the definition.
Tap for more steps...
Step 2.1
Evaluate the function at x=x+h.
Tap for more steps...
Step 2.1.1
Replace the variable x with x+h in the expression.
f(x+h)=3(x+h)2+6
Step 2.1.2
Simplify the result.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Rewrite (x+h)2 as (x+h)(x+h).
f(x+h)=3((x+h)(x+h))+6
Step 2.1.2.1.2
Expand (x+h)(x+h) using the FOIL Method.
Tap for more steps...
Step 2.1.2.1.2.1
Apply the distributive property.
f(x+h)=3(x(x+h)+h(x+h))+6
Step 2.1.2.1.2.2
Apply the distributive property.
f(x+h)=3(xx+xh+h(x+h))+6
Step 2.1.2.1.2.3
Apply the distributive property.
f(x+h)=3(xx+xh+hx+hh)+6
f(x+h)=3(xx+xh+hx+hh)+6
Step 2.1.2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.1.2.1.3.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.3.1.1
Multiply x by x.
f(x+h)=3(x2+xh+hx+hh)+6
Step 2.1.2.1.3.1.2
Multiply h by h.
f(x+h)=3(x2+xh+hx+h2)+6
f(x+h)=3(x2+xh+hx+h2)+6
Step 2.1.2.1.3.2
Add xh and hx.
Tap for more steps...
Step 2.1.2.1.3.2.1
Reorder x and h.
f(x+h)=3(x2+hx+hx+h2)+6
Step 2.1.2.1.3.2.2
Add hx and hx.
f(x+h)=3(x2+2hx+h2)+6
f(x+h)=3(x2+2hx+h2)+6
f(x+h)=3(x2+2hx+h2)+6
Step 2.1.2.1.4
Apply the distributive property.
f(x+h)=3x2+3(2hx)+3h2+6
Step 2.1.2.1.5
Multiply 2 by 3.
f(x+h)=3x2+6hx+3h2+6
f(x+h)=3x2+6hx+3h2+6
Step 2.1.2.2
The final answer is 3x2+6hx+3h2+6.
3x2+6hx+3h2+6
3x2+6hx+3h2+6
3x2+6hx+3h2+6
Step 2.2
Reorder.
Tap for more steps...
Step 2.2.1
Move 3x2.
6hx+3h2+3x2+6
Step 2.2.2
Reorder 6hx and 3h2.
3h2+6hx+3x2+6
3h2+6hx+3x2+6
Step 2.3
Find the components of the definition.
f(x+h)=3h2+6hx+3x2+6
f(x)=3x2+6
f(x+h)=3h2+6hx+3x2+6
f(x)=3x2+6
Step 3
Plug in the components.
f(x+h)-f(x)h=3h2+6hx+3x2+6-(3x2+6)h
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Apply the distributive property.
3h2+6hx+3x2+6-(3x2)-16h
Step 4.1.2
Multiply 3 by -1.
3h2+6hx+3x2+6-3x2-16h
Step 4.1.3
Multiply -1 by 6.
3h2+6hx+3x2+6-3x2-6h
Step 4.1.4
Subtract 3x2 from 3x2.
3h2+6hx+0+6-6h
Step 4.1.5
Add 3h2 and 0.
3h2+6hx+6-6h
Step 4.1.6
Subtract 6 from 6.
3h2+6hx+0h
Step 4.1.7
Add 3h2+6hx and 0.
3h2+6hxh
Step 4.1.8
Factor 3h out of 3h2+6hx.
Tap for more steps...
Step 4.1.8.1
Factor 3h out of 3h2.
3hh+6hxh
Step 4.1.8.2
Factor 3h out of 6hx.
3hh+3h(2x)h
Step 4.1.8.3
Factor 3h out of 3hh+3h(2x).
3h(h+2x)h
3h(h+2x)h
3h(h+2x)h
Step 4.2
Simplify terms.
Tap for more steps...
Step 4.2.1
Cancel the common factor of h.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
3h(h+2x)h
Step 4.2.1.2
Divide 3(h+2x) by 1.
3(h+2x)
3(h+2x)
Step 4.2.2
Apply the distributive property.
3h+3(2x)
Step 4.2.3
Simplify the expression.
Tap for more steps...
Step 4.2.3.1
Multiply 2 by 3.
3h+6x
Step 4.2.3.2
Reorder 3h and 6x.
6x+3h
6x+3h
6x+3h
6x+3h
Step 5
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay