Precalculus Examples

Determine if Odd, Even, or Neither
f(x)=7x2+5x-4
Step 1
Find f(-x).
Tap for more steps...
Step 1.1
Find f(-x) by substituting -x for all occurrence of x in f(x).
f(-x)=7(-x)2+5(-x)-4
Step 1.2
Simplify each term.
Tap for more steps...
Step 1.2.1
Apply the product rule to -x.
f(-x)=7((-1)2x2)+5(-x)-4
Step 1.2.2
Raise -1 to the power of 2.
f(-x)=7(1x2)+5(-x)-4
Step 1.2.3
Multiply x2 by 1.
f(-x)=7x2+5(-x)-4
Step 1.2.4
Multiply -1 by 5.
f(-x)=7x2-5x-4
f(-x)=7x2-5x-4
f(-x)=7x2-5x-4
Step 2
A function is even if f(-x)=f(x).
Tap for more steps...
Step 2.1
Check if f(-x)=f(x).
Step 2.2
Since 7x2-5x-47x2+5x-4, the function is not even.
The function is not even
The function is not even
Step 3
A function is odd if f(-x)=-f(x).
Tap for more steps...
Step 3.1
Find -f(x).
Tap for more steps...
Step 3.1.1
Multiply 7x2+5x-4 by -1.
-f(x)=-(7x2+5x-4)
Step 3.1.2
Apply the distributive property.
-f(x)=-(7x2)-(5x)+4
Step 3.1.3
Simplify.
Tap for more steps...
Step 3.1.3.1
Multiply 7 by -1.
-f(x)=-7x2-(5x)+4
Step 3.1.3.2
Multiply 5 by -1.
-f(x)=-7x2-5x+4
Step 3.1.3.3
Multiply -1 by -4.
-f(x)=-7x2-5x+4
-f(x)=-7x2-5x+4
-f(x)=-7x2-5x+4
Step 3.2
Since 7x2-5x-4-7x2-5x+4, the function is not odd.
The function is not odd
The function is not odd
Step 4
The function is neither odd nor even
Step 5
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay