Precalculus Examples

Expand Using the Binomial Theorem
(x+2)2
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=k=0nnCk(an-kbk).
k=022!(2-k)!k!(x)2-k(2)k
Step 2
Expand the summation.
2!(2-0)!0!(x)2-0(2)0+2!(2-1)!1!(x)2-1(2)1+2!(2-2)!2!(x)2-2(2)2
Step 3
Simplify the exponents for each term of the expansion.
1(x)2(2)0+2(x)1(2)1+1(x)0(2)2
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply (x)2 by 1.
(x)2(2)0+2(x)1(2)1+1(x)0(2)2
Step 4.2
Anything raised to 0 is 1.
x21+2(x)1(2)1+1(x)0(2)2
Step 4.3
Multiply x2 by 1.
x2+2(x)1(2)1+1(x)0(2)2
Step 4.4
Simplify.
x2+2x(2)1+1(x)0(2)2
Step 4.5
Evaluate the exponent.
x2+2x2+1(x)0(2)2
Step 4.6
Multiply 2 by 2.
x2+4x+1(x)0(2)2
Step 4.7
Multiply (x)0 by 1.
x2+4x+(x)0(2)2
Step 4.8
Anything raised to 0 is 1.
x2+4x+1(2)2
Step 4.9
Multiply (2)2 by 1.
x2+4x+(2)2
Step 4.10
Raise 2 to the power of 2.
x2+4x+4
x2+4x+4
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay