Precalculus Examples

x2-49x249
Step 1
Find the discriminant for x2-49=0x249=0. In this case, b2-4ac=196b24ac=196.
Tap for more steps...
Step 1.1
The discriminant of a quadratic is the expression inside the radical of the quadratic formula.
b2-4(ac)b24(ac)
Step 1.2
Substitute in the values of aa, bb, and cc.
02-4(1-49)024(149)
Step 1.3
Evaluate the result to find the discriminant.
Tap for more steps...
Step 1.3.1
Simplify each term.
Tap for more steps...
Step 1.3.1.1
Raising 00 to any positive power yields 00.
0-4(1-49)04(149)
Step 1.3.1.2
Multiply -4(1-49)4(149).
Tap for more steps...
Step 1.3.1.2.1
Multiply -4949 by 11.
0-4-490449
Step 1.3.1.2.2
Multiply -44 by -4949.
0+1960+196
0+1960+196
0+1960+196
Step 1.3.2
Add 00 and 196196.
196196
196196
196196
Step 2
A perfect square number is an integer that is the square of another integer. 196=14196=14, which is an integer number.
196=14196=14
Step 3
Since 196196 is the square of 1414, it is a perfect square number.
196196 is a perfect square number
Step 4
The polynomial x2-49x249 is not prime because the discriminant is a perfect square number.
Not prime
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay