Precalculus Examples
x2-49x2−49
Step 1
Step 1.1
The discriminant of a quadratic is the expression inside the radical of the quadratic formula.
b2-4(ac)b2−4(ac)
Step 1.2
Substitute in the values of aa, bb, and cc.
02-4(1⋅-49)02−4(1⋅−49)
Step 1.3
Evaluate the result to find the discriminant.
Step 1.3.1
Simplify each term.
Step 1.3.1.1
Raising 00 to any positive power yields 00.
0-4(1⋅-49)0−4(1⋅−49)
Step 1.3.1.2
Multiply -4(1⋅-49)−4(1⋅−49).
Step 1.3.1.2.1
Multiply -49−49 by 11.
0-4⋅-490−4⋅−49
Step 1.3.1.2.2
Multiply -4−4 by -49−49.
0+1960+196
0+1960+196
0+1960+196
Step 1.3.2
Add 00 and 196196.
196196
196196
196196
Step 2
A perfect square number is an integer that is the square of another integer. √196=14√196=14, which is an integer number.
√196=14√196=14
Step 3
Since 196196 is the square of 1414, it is a perfect square number.
196196 is a perfect square number
Step 4
The polynomial x2-49x2−49 is not prime because the discriminant is a perfect square number.
Not prime