Precalculus Examples

f(x)=8x-4+2x2
Step 1
Write f(x)=8x-4+2x2 as an equation.
y=8x-4+2x2
Step 2
Simplify 8x-4+2x2.
Tap for more steps...
Step 2.1
Move -4.
y=8x+2x2-4
Step 2.2
Reorder 8x and 2x2.
y=2x2+8x-4
y=2x2+8x-4
Step 3
Complete the square for 2x2+8x-4.
Tap for more steps...
Step 3.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=2
b=8
c=-4
Step 3.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 3.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 3.3.1
Substitute the values of a and b into the formula d=b2a.
d=822
Step 3.3.2
Simplify the right side.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor of 8 and 2.
Tap for more steps...
Step 3.3.2.1.1
Factor 2 out of 8.
d=2422
Step 3.3.2.1.2
Cancel the common factors.
Tap for more steps...
Step 3.3.2.1.2.1
Factor 2 out of 22.
d=242(2)
Step 3.3.2.1.2.2
Cancel the common factor.
d=2422
Step 3.3.2.1.2.3
Rewrite the expression.
d=42
d=42
d=42
Step 3.3.2.2
Cancel the common factor of 4 and 2.
Tap for more steps...
Step 3.3.2.2.1
Factor 2 out of 4.
d=222
Step 3.3.2.2.2
Cancel the common factors.
Tap for more steps...
Step 3.3.2.2.2.1
Factor 2 out of 2.
d=222(1)
Step 3.3.2.2.2.2
Cancel the common factor.
d=2221
Step 3.3.2.2.2.3
Rewrite the expression.
d=21
Step 3.3.2.2.2.4
Divide 2 by 1.
d=2
d=2
d=2
d=2
d=2
Step 3.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 3.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=-4-8242
Step 3.4.2
Simplify the right side.
Tap for more steps...
Step 3.4.2.1
Simplify each term.
Tap for more steps...
Step 3.4.2.1.1
Raise 8 to the power of 2.
e=-4-6442
Step 3.4.2.1.2
Multiply 4 by 2.
e=-4-648
Step 3.4.2.1.3
Divide 64 by 8.
e=-4-18
Step 3.4.2.1.4
Multiply -1 by 8.
e=-4-8
e=-4-8
Step 3.4.2.2
Subtract 8 from -4.
e=-12
e=-12
e=-12
Step 3.5
Substitute the values of a, d, and e into the vertex form 2(x+2)2-12.
2(x+2)2-12
2(x+2)2-12
Step 4
Set y equal to the new right side.
y=2(x+2)2-12
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay