Precalculus Examples

x2+y2+1+2x-y=0
Step 1
Subtract 1 from both sides of the equation.
x2+y2+2x-y=-1
Step 2
Complete the square for x2+2x.
Tap for more steps...
Step 2.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=2
c=0
Step 2.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 2.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 2.3.1
Substitute the values of a and b into the formula d=b2a.
d=221
Step 2.3.2
Cancel the common factor of 2.
Tap for more steps...
Step 2.3.2.1
Cancel the common factor.
d=221
Step 2.3.2.2
Rewrite the expression.
d=1
d=1
d=1
Step 2.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 2.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-2241
Step 2.4.2
Simplify the right side.
Tap for more steps...
Step 2.4.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.1.1
Raise 2 to the power of 2.
e=0-441
Step 2.4.2.1.2
Multiply 4 by 1.
e=0-44
Step 2.4.2.1.3
Cancel the common factor of 4.
Tap for more steps...
Step 2.4.2.1.3.1
Cancel the common factor.
e=0-44
Step 2.4.2.1.3.2
Rewrite the expression.
e=0-11
e=0-11
Step 2.4.2.1.4
Multiply -1 by 1.
e=0-1
e=0-1
Step 2.4.2.2
Subtract 1 from 0.
e=-1
e=-1
e=-1
Step 2.5
Substitute the values of a, d, and e into the vertex form (x+1)2-1.
(x+1)2-1
(x+1)2-1
Step 3
Substitute (x+1)2-1 for x2+2x in the equation x2+y2+2x-y=-1.
(x+1)2-1+y2-y=-1
Step 4
Move -1 to the right side of the equation by adding 1 to both sides.
(x+1)2+y2-y=-1+1
Step 5
Complete the square for y2-y.
Tap for more steps...
Step 5.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=-1
c=0
Step 5.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 5.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 5.3.1
Substitute the values of a and b into the formula d=b2a.
d=-121
Step 5.3.2
Simplify the right side.
Tap for more steps...
Step 5.3.2.1
Cancel the common factor of -1 and 1.
Tap for more steps...
Step 5.3.2.1.1
Rewrite -1 as -1(1).
d=-1(1)21
Step 5.3.2.1.2
Cancel the common factor.
d=-1121
Step 5.3.2.1.3
Rewrite the expression.
d=-12
d=-12
Step 5.3.2.2
Move the negative in front of the fraction.
d=-12
d=-12
d=-12
Step 5.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 5.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-1)241
Step 5.4.2
Simplify the right side.
Tap for more steps...
Step 5.4.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.1
Raise -1 to the power of 2.
e=0-141
Step 5.4.2.1.2
Multiply 4 by 1.
e=0-14
e=0-14
Step 5.4.2.2
Subtract 14 from 0.
e=-14
e=-14
e=-14
Step 5.5
Substitute the values of a, d, and e into the vertex form (y-12)2-14.
(y-12)2-14
(y-12)2-14
Step 6
Substitute (y-12)2-14 for y2-y in the equation x2+y2+2x-y=-1.
(x+1)2+(y-12)2-14=-1+1
Step 7
Move -14 to the right side of the equation by adding 14 to both sides.
(x+1)2+(y-12)2=-1+1+14
Step 8
Simplify -1+1+14.
Tap for more steps...
Step 8.1
Find the common denominator.
Tap for more steps...
Step 8.1.1
Write -1 as a fraction with denominator 1.
(x+1)2+(y-12)2=-11+1+14
Step 8.1.2
Multiply -11 by 44.
(x+1)2+(y-12)2=-1144+1+14
Step 8.1.3
Multiply -11 by 44.
(x+1)2+(y-12)2=-144+1+14
Step 8.1.4
Write 1 as a fraction with denominator 1.
(x+1)2+(y-12)2=-144+11+14
Step 8.1.5
Multiply 11 by 44.
(x+1)2+(y-12)2=-144+1144+14
Step 8.1.6
Multiply 11 by 44.
(x+1)2+(y-12)2=-144+44+14
(x+1)2+(y-12)2=-144+44+14
Step 8.2
Combine the numerators over the common denominator.
(x+1)2+(y-12)2=-14+4+14
Step 8.3
Simplify the expression.
Tap for more steps...
Step 8.3.1
Multiply -1 by 4.
(x+1)2+(y-12)2=-4+4+14
Step 8.3.2
Add -4 and 4.
(x+1)2+(y-12)2=0+14
Step 8.3.3
Add 0 and 1.
(x+1)2+(y-12)2=14
(x+1)2+(y-12)2=14
(x+1)2+(y-12)2=14
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay