Precalculus Examples
f(x)=x2−2x−8
Step 1
Write f(x)=x2−2x−8 as an equation.
y=x2−2x−8
Step 2
Step 2.1
Complete the square for x2−2x−8.
Step 2.1.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=−2
c=−8
Step 2.1.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 2.1.3
Find the value of d using the formula d=b2a.
Step 2.1.3.1
Substitute the values of a and b into the formula d=b2a.
d=−22⋅1
Step 2.1.3.2
Cancel the common factor of −2 and 2.
Step 2.1.3.2.1
Factor 2 out of −2.
d=2⋅−12⋅1
Step 2.1.3.2.2
Cancel the common factors.
Step 2.1.3.2.2.1
Factor 2 out of 2⋅1.
d=2⋅−12(1)
Step 2.1.3.2.2.2
Cancel the common factor.
d=2⋅−12⋅1
Step 2.1.3.2.2.3
Rewrite the expression.
d=−11
Step 2.1.3.2.2.4
Divide −1 by 1.
d=−1
d=−1
d=−1
d=−1
Step 2.1.4
Find the value of e using the formula e=c−b24a.
Step 2.1.4.1
Substitute the values of c, b and a into the formula e=c−b24a.
e=−8−(−2)24⋅1
Step 2.1.4.2
Simplify the right side.
Step 2.1.4.2.1
Simplify each term.
Step 2.1.4.2.1.1
Raise −2 to the power of 2.
e=−8−44⋅1
Step 2.1.4.2.1.2
Multiply 4 by 1.
e=−8−44
Step 2.1.4.2.1.3
Cancel the common factor of 4.
Step 2.1.4.2.1.3.1
Cancel the common factor.
e=−8−44
Step 2.1.4.2.1.3.2
Rewrite the expression.
e=−8−1⋅1
e=−8−1⋅1
Step 2.1.4.2.1.4
Multiply −1 by 1.
e=−8−1
e=−8−1
Step 2.1.4.2.2
Subtract 1 from −8.
e=−9
e=−9
e=−9
Step 2.1.5
Substitute the values of a, d, and e into the vertex form (x−1)2−9.
(x−1)2−9
(x−1)2−9
Step 2.2
Set y equal to the new right side.
y=(x−1)2−9
y=(x−1)2−9
Step 3
Use the vertex form, y=a(x−h)2+k, to determine the values of a, h, and k.
a=1
h=1
k=−9
Step 4
Since the value of a is positive, the parabola opens up.
Opens Up
Step 5
Find the vertex (h,k).
(1,−9)
Step 6
Step 6.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 6.2
Substitute the value of a into the formula.
14⋅1
Step 6.3
Cancel the common factor of 1.
Step 6.3.1
Cancel the common factor.
14⋅1
Step 6.3.2
Rewrite the expression.
14
14
14
Step 7
Step 7.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 7.2
Substitute the known values of h, p, and k into the formula and simplify.
(1,−354)
(1,−354)
Step 8
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=1
Step 9
Step 9.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k−p
Step 9.2
Substitute the known values of p and k into the formula and simplify.
y=−374
y=−374
Step 10
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (1,−9)
Focus: (1,−354)
Axis of Symmetry: x=1
Directrix: y=−374
Step 11