Precalculus Examples
(2x−5)2−(5y−4)2=4
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Rewrite (2x−5)2 as (2x−5)(2x−5).
(2x−5)(2x−5)−(5y−4)2=4
Step 1.1.2
Expand (2x−5)(2x−5) using the FOIL Method.
Step 1.1.2.1
Apply the distributive property.
2x(2x−5)−5(2x−5)−(5y−4)2=4
Step 1.1.2.2
Apply the distributive property.
2x(2x)+2x⋅−5−5(2x−5)−(5y−4)2=4
Step 1.1.2.3
Apply the distributive property.
2x(2x)+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
2x(2x)+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
Step 1.1.3
Simplify and combine like terms.
Step 1.1.3.1
Simplify each term.
Step 1.1.3.1.1
Rewrite using the commutative property of multiplication.
2⋅(2x⋅x)+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
Step 1.1.3.1.2
Multiply x by x by adding the exponents.
Step 1.1.3.1.2.1
Move x.
2⋅(2(x⋅x))+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
Step 1.1.3.1.2.2
Multiply x by x.
2⋅(2x2)+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
2⋅(2x2)+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
Step 1.1.3.1.3
Multiply 2 by 2.
4x2+2x⋅−5−5(2x)−5⋅−5−(5y−4)2=4
Step 1.1.3.1.4
Multiply −5 by 2.
4x2−10x−5(2x)−5⋅−5−(5y−4)2=4
Step 1.1.3.1.5
Multiply 2 by −5.
4x2−10x−10x−5⋅−5−(5y−4)2=4
Step 1.1.3.1.6
Multiply −5 by −5.
4x2−10x−10x+25−(5y−4)2=4
4x2−10x−10x+25−(5y−4)2=4
Step 1.1.3.2
Subtract 10x from −10x.
4x2−20x+25−(5y−4)2=4
4x2−20x+25−(5y−4)2=4
Step 1.1.4
Rewrite (5y−4)2 as (5y−4)(5y−4).
4x2−20x+25−((5y−4)(5y−4))=4
Step 1.1.5
Expand (5y−4)(5y−4) using the FOIL Method.
Step 1.1.5.1
Apply the distributive property.
4x2−20x+25−(5y(5y−4)−4(5y−4))=4
Step 1.1.5.2
Apply the distributive property.
4x2−20x+25−(5y(5y)+5y⋅−4−4(5y−4))=4
Step 1.1.5.3
Apply the distributive property.
4x2−20x+25−(5y(5y)+5y⋅−4−4(5y)−4⋅−4)=4
4x2−20x+25−(5y(5y)+5y⋅−4−4(5y)−4⋅−4)=4
Step 1.1.6
Simplify and combine like terms.
Step 1.1.6.1
Simplify each term.
Step 1.1.6.1.1
Rewrite using the commutative property of multiplication.
4x2−20x+25−(5⋅(5y⋅y)+5y⋅−4−4(5y)−4⋅−4)=4
Step 1.1.6.1.2
Multiply y by y by adding the exponents.
Step 1.1.6.1.2.1
Move y.
4x2−20x+25−(5⋅(5(y⋅y))+5y⋅−4−4(5y)−4⋅−4)=4
Step 1.1.6.1.2.2
Multiply y by y.
4x2−20x+25−(5⋅(5y2)+5y⋅−4−4(5y)−4⋅−4)=4
4x2−20x+25−(5⋅(5y2)+5y⋅−4−4(5y)−4⋅−4)=4
Step 1.1.6.1.3
Multiply 5 by 5.
4x2−20x+25−(25y2+5y⋅−4−4(5y)−4⋅−4)=4
Step 1.1.6.1.4
Multiply −4 by 5.
4x2−20x+25−(25y2−20y−4(5y)−4⋅−4)=4
Step 1.1.6.1.5
Multiply 5 by −4.
4x2−20x+25−(25y2−20y−20y−4⋅−4)=4
Step 1.1.6.1.6
Multiply −4 by −4.
4x2−20x+25−(25y2−20y−20y+16)=4
4x2−20x+25−(25y2−20y−20y+16)=4
Step 1.1.6.2
Subtract 20y from −20y.
4x2−20x+25−(25y2−40y+16)=4
4x2−20x+25−(25y2−40y+16)=4
Step 1.1.7
Apply the distributive property.
4x2−20x+25−(25y2)−(−40y)−1⋅16=4
Step 1.1.8
Simplify.
Step 1.1.8.1
Multiply 25 by −1.
4x2−20x+25−25y2−(−40y)−1⋅16=4
Step 1.1.8.2
Multiply −40 by −1.
4x2−20x+25−25y2+40y−1⋅16=4
Step 1.1.8.3
Multiply −1 by 16.
4x2−20x+25−25y2+40y−16=4
4x2−20x+25−25y2+40y−16=4
4x2−20x+25−25y2+40y−16=4
Step 1.2
Simplify the expression.
Step 1.2.1
Subtract 16 from 25.
4x2−20x−25y2+40y+9=4
Step 1.2.2
Move −20x.
4x2−25y2−20x+40y+9=4
4x2−25y2−20x+40y+9=4
4x2−25y2−20x+40y+9=4
Step 2
Step 2.1
Subtract 4 from both sides of the equation.
4x2−25y2−20x+40y+9−4=0
Step 2.2
Subtract 4 from 9.
4x2−25y2−20x+40y+5=0
4x2−25y2−20x+40y+5=0