Precalculus Examples
(1,1) , (1,2)
Step 1
Step 1.1
Use the midpoint formula to find the midpoint of the line segment.
(x1+x22,y1+y22)
Step 1.2
Substitute in the values for (x1,y1) and (x2,y2).
(1+12,1+22)
Step 1.3
Add 1 and 1.
(22,1+22)
Step 1.4
Divide 2 by 2.
(1,1+22)
Step 1.5
Add 1 and 2.
(1,32)
(1,32)
Step 2
Step 2.1
Use the distance formula to determine the distance between the two points.
Distance=√(x2-x1)2+(y2-y1)2
Step 2.2
Substitute the actual values of the points into the distance formula.
r=√(1-1)2+(1-32)2
Step 2.3
Simplify.
Step 2.3.1
Subtract 1 from 1.
r=√02+(1-32)2
Step 2.3.2
Raising 0 to any positive power yields 0.
r=√0+(1-32)2
Step 2.3.3
Write 1 as a fraction with a common denominator.
r=√0+(22-32)2
Step 2.3.4
Combine the numerators over the common denominator.
r=√0+(2-32)2
Step 2.3.5
Subtract 3 from 2.
r=√0+(-12)2
Step 2.3.6
Move the negative in front of the fraction.
r=√0+(-12)2
Step 2.3.7
Use the power rule (ab)n=anbn to distribute the exponent.
Step 2.3.7.1
Apply the product rule to -12.
r=√0+(-1)2(12)2
Step 2.3.7.2
Apply the product rule to 12.
r=√0+(-1)2(1222)
r=√0+(-1)2(1222)
Step 2.3.8
Raise -1 to the power of 2.
r=√0+1(1222)
Step 2.3.9
Multiply 1222 by 1.
r=√0+1222
Step 2.3.10
One to any power is one.
r=√0+122
Step 2.3.11
Raise 2 to the power of 2.
r=√0+14
Step 2.3.12
Add 0 and 14.
r=√14
Step 2.3.13
Rewrite √14 as √1√4.
r=√1√4
Step 2.3.14
Any root of 1 is 1.
r=1√4
Step 2.3.15
Simplify the denominator.
Step 2.3.15.1
Rewrite 4 as 22.
r=1√22
Step 2.3.15.2
Pull terms out from under the radical, assuming positive real numbers.
r=12
r=12
r=12
r=12
Step 3
(x-h)2+(y-k)2=r2 is the equation form for a circle with r radius and (h,k) as the center point. In this case, r=12 and the center point is (1,32). The equation for the circle is (x-(1))2+(y-(32))2=(12)2.
(x-(1))2+(y-(32))2=(12)2
Step 4
The circle equation is (x-1)2+(y-32)2=14.
(x-1)2+(y-32)2=14
Step 5