Precalculus Examples
(1,-2)(1,−2) , (3,6)(3,6)
Step 1
Step 1.1
Use the midpoint formula to find the midpoint of the line segment.
(x1+x22,y1+y22)(x1+x22,y1+y22)
Step 1.2
Substitute in the values for (x1,y1)(x1,y1) and (x2,y2)(x2,y2).
(1+32,-2+62)(1+32,−2+62)
Step 1.3
Add 11 and 33.
(42,-2+62)(42,−2+62)
Step 1.4
Divide 44 by 22.
(2,-2+62)(2,−2+62)
Step 1.5
Cancel the common factor of -2+6−2+6 and 22.
Step 1.5.1
Factor 22 out of -2−2.
(2,2⋅-1+62)(2,2⋅−1+62)
Step 1.5.2
Factor 22 out of 66.
(2,2⋅-1+2⋅32)(2,2⋅−1+2⋅32)
Step 1.5.3
Factor 22 out of 2⋅-1+2⋅32⋅−1+2⋅3.
(2,2⋅(-1+3)2)(2,2⋅(−1+3)2)
Step 1.5.4
Cancel the common factors.
Step 1.5.4.1
Factor 22 out of 22.
(2,2⋅(-1+3)2(1))(2,2⋅(−1+3)2(1))
Step 1.5.4.2
Cancel the common factor.
(2,2⋅(-1+3)2⋅1)
Step 1.5.4.3
Rewrite the expression.
(2,-1+31)
Step 1.5.4.4
Divide -1+3 by 1.
(2,-1+3)
(2,-1+3)
(2,-1+3)
Step 1.6
Add -1 and 3.
(2,2)
(2,2)
Step 2
Step 2.1
Use the distance formula to determine the distance between the two points.
Distance=√(x2-x1)2+(y2-y1)2
Step 2.2
Substitute the actual values of the points into the distance formula.
r=√(1-2)2+((-2)-2)2
Step 2.3
Simplify.
Step 2.3.1
Subtract 2 from 1.
r=√(-1)2+((-2)-2)2
Step 2.3.2
Raise -1 to the power of 2.
r=√1+((-2)-2)2
Step 2.3.3
Subtract 2 from -2.
r=√1+(-4)2
Step 2.3.4
Raise -4 to the power of 2.
r=√1+16
Step 2.3.5
Add 1 and 16.
r=√17
r=√17
r=√17
Step 3
(x-h)2+(y-k)2=r2 is the equation form for a circle with r radius and (h,k) as the center point. In this case, r=√17 and the center point is (2,2). The equation for the circle is (x-(2))2+(y-(2))2=(√17)2.
(x-(2))2+(y-(2))2=(√17)2
Step 4
The circle equation is (x-2)2+(y-2)2=17.
(x-2)2+(y-2)2=17
Step 5