Precalculus Examples
(cos2(x)-1)(tan2(x)-1)(cos2(x)−1)(tan2(x)−1)
Step 1
Step 1.1
Reorder cos2(x)cos2(x) and -1−1.
(-1+cos2(x))(tan2(x)-1)(−1+cos2(x))(tan2(x)−1)
Step 1.2
Rewrite -1−1 as -1(1)−1(1).
(-1(1)+cos2(x))(tan2(x)-1)(−1(1)+cos2(x))(tan2(x)−1)
Step 1.3
Factor -1−1 out of cos2(x)cos2(x).
(-1(1)-1(-cos2(x)))(tan2(x)-1)(−1(1)−1(−cos2(x)))(tan2(x)−1)
Step 1.4
Factor -1−1 out of -1(1)-1(-cos2(x))−1(1)−1(−cos2(x)).
-1(1-cos2(x))(tan2(x)-1)−1(1−cos2(x))(tan2(x)−1)
Step 1.5
Rewrite -1(1-cos2(x))−1(1−cos2(x)) as -(1-cos2(x))−(1−cos2(x)).
-(1-cos2(x))(tan2(x)-1)
-(1-cos2(x))(tan2(x)-1)
Step 2
Apply pythagorean identity.
-sin2(x)(tan2(x)-1)
Step 3
Step 3.1
Simplify each term.
Step 3.1.1
Rewrite tan(x) in terms of sines and cosines.
-sin2(x)((sin(x)cos(x))2-1)
Step 3.1.2
Apply the product rule to sin(x)cos(x).
-sin2(x)(sin2(x)cos2(x)-1)
-sin2(x)(sin2(x)cos2(x)-1)
Step 3.2
Apply the distributive property.
-sin2(x)sin2(x)cos2(x)-sin2(x)⋅-1
-sin2(x)sin2(x)cos2(x)-sin2(x)⋅-1
Step 4
Step 4.1
Combine sin2(x)cos2(x) and sin2(x).
-sin2(x)sin2(x)cos2(x)-sin2(x)⋅-1
Step 4.2
Multiply sin2(x) by sin2(x) by adding the exponents.
Step 4.2.1
Use the power rule aman=am+n to combine exponents.
-sin(x)2+2cos2(x)-sin2(x)⋅-1
Step 4.2.2
Add 2 and 2.
-sin4(x)cos2(x)-sin2(x)⋅-1
-sin4(x)cos2(x)-sin2(x)⋅-1
-sin4(x)cos2(x)-sin2(x)⋅-1
Step 5
Step 5.1
Multiply -1 by -1.
-sin4(x)cos2(x)+1sin2(x)
Step 5.2
Multiply sin2(x) by 1.
-sin4(x)cos2(x)+sin2(x)
-sin4(x)cos2(x)+sin2(x)
Step 6
Step 6.1
Rewrite sin4(x)cos2(x) as (sin2(x)cos(x))2.
-(sin2(x)cos(x))2+sin2(x)
Step 6.2
Reorder -(sin2(x)cos(x))2 and sin2(x).
sin2(x)-(sin2(x)cos(x))2
sin2(x)-(sin2(x)cos(x))2
Step 7
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=sin(x) and b=sin2(x)cos(x).
(sin(x)+sin2(x)cos(x))(sin(x)-sin2(x)cos(x))
Step 8
Step 8.1
Simplify each term.
Step 8.1.1
Factor sin(x) out of sin2(x).
(sin(x)+sin(x)sin(x)cos(x))(sin(x)-sin2(x)cos(x))
Step 8.1.2
Separate fractions.
(sin(x)+sin(x)1⋅sin(x)cos(x))(sin(x)-sin2(x)cos(x))
Step 8.1.3
Convert from sin(x)cos(x) to tan(x).
(sin(x)+sin(x)1tan(x))(sin(x)-sin2(x)cos(x))
Step 8.1.4
Divide sin(x) by 1.
(sin(x)+sin(x)tan(x))(sin(x)-sin2(x)cos(x))
(sin(x)+sin(x)tan(x))(sin(x)-sin2(x)cos(x))
Step 8.2
Simplify each term.
Step 8.2.1
Factor sin(x) out of sin2(x).
(sin(x)+sin(x)tan(x))(sin(x)-sin(x)sin(x)cos(x))
Step 8.2.2
Separate fractions.
(sin(x)+sin(x)tan(x))(sin(x)-(sin(x)1⋅sin(x)cos(x)))
Step 8.2.3
Convert from sin(x)cos(x) to tan(x).
(sin(x)+sin(x)tan(x))(sin(x)-(sin(x)1tan(x)))
Step 8.2.4
Divide sin(x) by 1.
(sin(x)+sin(x)tan(x))(sin(x)-sin(x)tan(x))
(sin(x)+sin(x)tan(x))(sin(x)-sin(x)tan(x))
(sin(x)+sin(x)tan(x))(sin(x)-sin(x)tan(x))
Step 9
Step 9.1
Apply the distributive property.
sin(x)(sin(x)-sin(x)tan(x))+sin(x)tan(x)(sin(x)-sin(x)tan(x))
Step 9.2
Apply the distributive property.
sin(x)sin(x)+sin(x)(-sin(x)tan(x))+sin(x)tan(x)(sin(x)-sin(x)tan(x))
Step 9.3
Apply the distributive property.
sin(x)sin(x)+sin(x)(-sin(x)tan(x))+sin(x)tan(x)sin(x)+sin(x)tan(x)(-sin(x)tan(x))
sin(x)sin(x)+sin(x)(-sin(x)tan(x))+sin(x)tan(x)sin(x)+sin(x)tan(x)(-sin(x)tan(x))
Step 10
Step 10.1
Combine the opposite terms in sin(x)sin(x)+sin(x)(-sin(x)tan(x))+sin(x)tan(x)sin(x)+sin(x)tan(x)(-sin(x)tan(x)).
Step 10.1.1
Reorder the factors in the terms sin(x)(-sin(x)tan(x)) and sin(x)tan(x)sin(x).
sin(x)sin(x)-sin(x)sin(x)tan(x)+sin(x)sin(x)tan(x)+sin(x)tan(x)(-sin(x)tan(x))
Step 10.1.2
Add -sin(x)sin(x)tan(x) and sin(x)sin(x)tan(x).
sin(x)sin(x)+0+sin(x)tan(x)(-sin(x)tan(x))
Step 10.1.3
Add sin(x)sin(x) and 0.
sin(x)sin(x)+sin(x)tan(x)(-sin(x)tan(x))
sin(x)sin(x)+sin(x)tan(x)(-sin(x)tan(x))
Step 10.2
Simplify each term.
Step 10.2.1
Multiply sin(x)sin(x).
Step 10.2.1.1
Raise sin(x) to the power of 1.
sin1(x)sin(x)+sin(x)tan(x)(-sin(x)tan(x))
Step 10.2.1.2
Raise sin(x) to the power of 1.
sin1(x)sin1(x)+sin(x)tan(x)(-sin(x)tan(x))
Step 10.2.1.3
Use the power rule aman=am+n to combine exponents.
sin(x)1+1+sin(x)tan(x)(-sin(x)tan(x))
Step 10.2.1.4
Add 1 and 1.
sin2(x)+sin(x)tan(x)(-sin(x)tan(x))
sin2(x)+sin(x)tan(x)(-sin(x)tan(x))
Step 10.2.2
Rewrite using the commutative property of multiplication.
sin2(x)-sin(x)tan(x)sin(x)tan(x)
Step 10.2.3
Multiply -sin(x)tan(x)sin(x).
Step 10.2.3.1
Raise sin(x) to the power of 1.
sin2(x)-(sin1(x)sin(x))tan(x)tan(x)
Step 10.2.3.2
Raise sin(x) to the power of 1.
sin2(x)-(sin1(x)sin1(x))tan(x)tan(x)
Step 10.2.3.3
Use the power rule aman=am+n to combine exponents.
sin2(x)-sin(x)1+1tan(x)tan(x)
Step 10.2.3.4
Add 1 and 1.
sin2(x)-sin2(x)tan(x)tan(x)
sin2(x)-sin2(x)tan(x)tan(x)
Step 10.2.4
Multiply -sin2(x)tan(x)tan(x).
Step 10.2.4.1
Raise tan(x) to the power of 1.
sin2(x)-sin2(x)(tan1(x)tan(x))
Step 10.2.4.2
Raise tan(x) to the power of 1.
sin2(x)-sin2(x)(tan1(x)tan1(x))
Step 10.2.4.3
Use the power rule aman=am+n to combine exponents.
sin2(x)-sin2(x)tan(x)1+1
Step 10.2.4.4
Add 1 and 1.
sin2(x)-sin2(x)tan2(x)
sin2(x)-sin2(x)tan2(x)
sin2(x)-sin2(x)tan2(x)
sin2(x)-sin2(x)tan2(x)