Precalculus Examples
sec(x)-cos(x)tan(x)sec(x)−cos(x)tan(x)
Step 1
Rewrite sec(x)sec(x) in terms of sines and cosines.
1cos(x)-cos(x)tan(x)1cos(x)−cos(x)tan(x)
Step 2
Rewrite tan(x)tan(x) in terms of sines and cosines.
1cos(x)-cos(x)sin(x)cos(x)1cos(x)−cos(x)sin(x)cos(x)
Step 3
Multiply the numerator by the reciprocal of the denominator.
(1cos(x)-cos(x))cos(x)sin(x)(1cos(x)−cos(x))cos(x)sin(x)
Step 4
Apply the distributive property.
1cos(x)⋅cos(x)sin(x)-cos(x)cos(x)sin(x)1cos(x)⋅cos(x)sin(x)−cos(x)cos(x)sin(x)
Step 5
Step 5.1
Cancel the common factor.
1cos(x)⋅cos(x)sin(x)-cos(x)cos(x)sin(x)
Step 5.2
Rewrite the expression.
1sin(x)-cos(x)cos(x)sin(x)
1sin(x)-cos(x)cos(x)sin(x)
Step 6
Step 6.1
Combine cos(x)sin(x) and cos(x).
1sin(x)-cos(x)cos(x)sin(x)
Step 6.2
Raise cos(x) to the power of 1.
1sin(x)-cos1(x)cos(x)sin(x)
Step 6.3
Raise cos(x) to the power of 1.
1sin(x)-cos1(x)cos1(x)sin(x)
Step 6.4
Use the power rule aman=am+n to combine exponents.
1sin(x)-cos(x)1+1sin(x)
Step 6.5
Add 1 and 1.
1sin(x)-cos2(x)sin(x)
1sin(x)-cos2(x)sin(x)
Step 7
Combine the numerators over the common denominator.
1-cos2(x)sin(x)
Step 8
Apply pythagorean identity.
sin2(x)sin(x)
Step 9
Step 9.1
Factor sin(x) out of sin2(x).
sin(x)sin(x)sin(x)
Step 9.2
Cancel the common factors.
Step 9.2.1
Multiply by 1.
sin(x)sin(x)sin(x)⋅1
Step 9.2.2
Cancel the common factor.
sin(x)sin(x)sin(x)⋅1
Step 9.2.3
Rewrite the expression.
sin(x)1
Step 9.2.4
Divide sin(x) by 1.
sin(x)
sin(x)
sin(x)