Precalculus Examples
3x3−2x2+3x−4x−3
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 |
Step 2
Divide the highest order term in the dividend 3x3 by the highest order term in divisor x.
3x2 | |||||||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 |
Step 3
Multiply the new quotient term by the divisor.
3x2 | |||||||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 | ||
+ | 3x3 | - | 9x2 |
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in 3x3−9x2
3x2 | |||||||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 | ||
- | 3x3 | + | 9x2 |
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x2 | |||||||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 | ||
- | 3x3 | + | 9x2 | ||||||||
+ | 7x2 |
Step 6
Pull the next terms from the original dividend down into the current dividend.
3x2 | |||||||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 | ||
- | 3x3 | + | 9x2 | ||||||||
+ | 7x2 | + | 3x |
Step 7
Divide the highest order term in the dividend 7x2 by the highest order term in divisor x.
3x2 | + | 7x | |||||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 | ||
- | 3x3 | + | 9x2 | ||||||||
+ | 7x2 | + | 3x |
Step 8
Multiply the new quotient term by the divisor.
3x2 | + | 7x | |||||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 | ||
- | 3x3 | + | 9x2 | ||||||||
+ | 7x2 | + | 3x | ||||||||
+ | 7x2 | - | 21x |
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in 7x2−21x
3x2 | + | 7x | |||||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 | ||
- | 3x3 | + | 9x2 | ||||||||
+ | 7x2 | + | 3x | ||||||||
- | 7x2 | + | 21x |
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x2 | + | 7x | |||||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 | ||
- | 3x3 | + | 9x2 | ||||||||
+ | 7x2 | + | 3x | ||||||||
- | 7x2 | + | 21x | ||||||||
+ | 24x |
Step 11
Pull the next terms from the original dividend down into the current dividend.
3x2 | + | 7x | |||||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 | ||
- | 3x3 | + | 9x2 | ||||||||
+ | 7x2 | + | 3x | ||||||||
- | 7x2 | + | 21x | ||||||||
+ | 24x | - | 4 |
Step 12
Divide the highest order term in the dividend 24x by the highest order term in divisor x.
3x2 | + | 7x | + | 24 | |||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 | ||
- | 3x3 | + | 9x2 | ||||||||
+ | 7x2 | + | 3x | ||||||||
- | 7x2 | + | 21x | ||||||||
+ | 24x | - | 4 |
Step 13
Multiply the new quotient term by the divisor.
3x2 | + | 7x | + | 24 | |||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 | ||
- | 3x3 | + | 9x2 | ||||||||
+ | 7x2 | + | 3x | ||||||||
- | 7x2 | + | 21x | ||||||||
+ | 24x | - | 4 | ||||||||
+ | 24x | - | 72 |
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in 24x−72
3x2 | + | 7x | + | 24 | |||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 | ||
- | 3x3 | + | 9x2 | ||||||||
+ | 7x2 | + | 3x | ||||||||
- | 7x2 | + | 21x | ||||||||
+ | 24x | - | 4 | ||||||||
- | 24x | + | 72 |
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x2 | + | 7x | + | 24 | |||||||
x | - | 3 | 3x3 | - | 2x2 | + | 3x | - | 4 | ||
- | 3x3 | + | 9x2 | ||||||||
+ | 7x2 | + | 3x | ||||||||
- | 7x2 | + | 21x | ||||||||
+ | 24x | - | 4 | ||||||||
- | 24x | + | 72 | ||||||||
+ | 68 |
Step 16
The final answer is the quotient plus the remainder over the divisor.
3x2+7x+24+68x−3