Precalculus Examples

3x+6x2x+33x+6x2x+3
Step 1
To calculate the remainder, first divide the polynomials.
Tap for more steps...
Step 1.1
Reorder 3x3x and 6x26x2.
6x2+3xx+36x2+3xx+3
Step 1.2
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 00.
xx+336x26x2+3x3x+00
Step 1.3
Divide the highest order term in the dividend 6x26x2 by the highest order term in divisor xx.
6x6x
xx+336x26x2+3x3x+00
Step 1.4
Multiply the new quotient term by the divisor.
6x6x
xx+336x26x2+3x3x+00
+6x26x2+18x18x
Step 1.5
The expression needs to be subtracted from the dividend, so change all the signs in 6x2+18x6x2+18x
6x6x
xx+336x26x2+3x3x+00
-6x26x2-18x18x
Step 1.6
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
6x6x
xx+336x26x2+3x3x+00
-6x26x2-18x18x
-15x15x
Step 1.7
Pull the next terms from the original dividend down into the current dividend.
6x6x
xx+336x26x2+3x3x+00
-6x26x2-18x18x
-15x15x+00
Step 1.8
Divide the highest order term in the dividend -15x15x by the highest order term in divisor xx.
6x6x-1515
xx+336x26x2+3x3x+00
-6x26x2-18x18x
-15x15x+00
Step 1.9
Multiply the new quotient term by the divisor.
6x6x-1515
xx+336x26x2+3x3x+00
-6x26x2-18x18x
-15x15x+00
-15x15x-4545
Step 1.10
The expression needs to be subtracted from the dividend, so change all the signs in -15x-4515x45
6x6x-1515
xx+336x26x2+3x3x+00
-6x26x2-18x18x
-15x15x+00
+15x15x+4545
Step 1.11
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
6x6x-1515
xx+336x26x2+3x3x+00
-6x26x2-18x18x
-15x15x+00
+15x15x+4545
+4545
Step 1.12
The final answer is the quotient plus the remainder over the divisor.
6x-15+45x+36x15+45x+3
6x-15+45x+36x15+45x+3
Step 2
Since the last term in the resulting expression is a fraction, the numerator of the fraction is the remainder.
4545
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay