Precalculus Examples
(-2,-7)(−2,−7) , y=-3xy=−3x
Step 1
Step 1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.2
Using the slope-intercept form, the slope is -3−3.
m=-3m=−3
m=-3m=−3
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-1-3mperpendicular=−1−3
Step 3
Step 3.1
Move the negative in front of the fraction.
mperpendicular=13mperpendicular=13
Step 3.2
Multiply --13−−13.
Step 3.2.1
Multiply -1−1 by -1−1.
mperpendicular=1(13)mperpendicular=1(13)
Step 3.2.2
Multiply 1313 by 11.
mperpendicular=13mperpendicular=13
mperpendicular=13mperpendicular=13
mperpendicular=13mperpendicular=13
Step 4
Step 4.1
Use the slope 1313 and a given point (-2,-7)(−2,−7) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(-7)=13⋅(x-(-2))y−(−7)=13⋅(x−(−2))
Step 4.2
Simplify the equation and keep it in point-slope form.
y+7=13⋅(x+2)y+7=13⋅(x+2)
y+7=13⋅(x+2)y+7=13⋅(x+2)
Step 5
Step 5.1
Solve for yy.
Step 5.1.1
Simplify 13⋅(x+2)13⋅(x+2).
Step 5.1.1.1
Rewrite.
y+7=0+0+13⋅(x+2)y+7=0+0+13⋅(x+2)
Step 5.1.1.2
Simplify by adding zeros.
y+7=13⋅(x+2)y+7=13⋅(x+2)
Step 5.1.1.3
Apply the distributive property.
y+7=13x+13⋅2y+7=13x+13⋅2
Step 5.1.1.4
Combine 1313 and xx.
y+7=x3+13⋅2y+7=x3+13⋅2
Step 5.1.1.5
Combine 1313 and 22.
y+7=x3+23y+7=x3+23
y+7=x3+23y+7=x3+23
Step 5.1.2
Move all terms not containing yy to the right side of the equation.
Step 5.1.2.1
Subtract 77 from both sides of the equation.
y=x3+23-7y=x3+23−7
Step 5.1.2.2
To write -7−7 as a fraction with a common denominator, multiply by 3333.
y=x3+23-7⋅33y=x3+23−7⋅33
Step 5.1.2.3
Combine -7−7 and 3333.
y=x3+23+-7⋅33y=x3+23+−7⋅33
Step 5.1.2.4
Combine the numerators over the common denominator.
y=x3+2-7⋅33y=x3+2−7⋅33
Step 5.1.2.5
Simplify the numerator.
Step 5.1.2.5.1
Multiply -7−7 by 33.
y=x3+2-213y=x3+2−213
Step 5.1.2.5.2
Subtract 2121 from 22.
y=x3+-193y=x3+−193
y=x3+-193y=x3+−193
Step 5.1.2.6
Move the negative in front of the fraction.
y=x3-193y=x3−193
y=x3-193y=x3−193
y=x3-193y=x3−193
Step 5.2
Reorder terms.
y=13x-193y=13x−193
y=13x-193y=13x−193
Step 6