Precalculus Examples
27x4-x27x4−x
Step 1
Step 1.1
Factor xx out of 27x427x4.
x(27x3)-xx(27x3)−x
Step 1.2
Factor xx out of -x−x.
x(27x3)+x⋅-1x(27x3)+x⋅−1
Step 1.3
Factor xx out of x(27x3)+x⋅-1x(27x3)+x⋅−1.
x(27x3-1)x(27x3−1)
x(27x3-1)x(27x3−1)
Step 2
Rewrite 27x327x3 as (3x)3(3x)3.
x((3x)3-1)x((3x)3−1)
Step 3
Rewrite 11 as 1313.
x((3x)3-13)x((3x)3−13)
Step 4
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2) where a=3xa=3x and b=1b=1.
x((3x-1)((3x)2+3x⋅1+12))x((3x−1)((3x)2+3x⋅1+12))
Step 5
Step 5.1
Simplify.
Step 5.1.1
Apply the product rule to 3x3x.
x((3x-1)(32x2+3x⋅1+12))x((3x−1)(32x2+3x⋅1+12))
Step 5.1.2
Raise 33 to the power of 22.
x((3x-1)(9x2+3x⋅1+12))x((3x−1)(9x2+3x⋅1+12))
Step 5.1.3
Multiply 33 by 11.
x((3x-1)(9x2+3x+12))x((3x−1)(9x2+3x+12))
Step 5.1.4
One to any power is one.
x((3x-1)(9x2+3x+1))x((3x−1)(9x2+3x+1))
x((3x-1)(9x2+3x+1))x((3x−1)(9x2+3x+1))
Step 5.2
Remove unnecessary parentheses.
x(3x-1)(9x2+3x+1)x(3x−1)(9x2+3x+1)
x(3x-1)(9x2+3x+1)x(3x−1)(9x2+3x+1)