Examples
f(x)=110x+4f(x)=110x+4
Step 1
Find where the expression 110x+4110x+4 is undefined.
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 2
The vertical asymptotes occur at areas of infinite discontinuity.
No Vertical Asymptotes
Step 3
Step 3.1
Apply L'Hospital's rule.
Step 3.1.1
Evaluate the limit of the numerator and the limit of the denominator.
Step 3.1.1.1
Take the limit of the numerator and the limit of the denominator.
limx→∞1+4⋅10xlimx→∞10xlimx→∞1+4⋅10xlimx→∞10x
Step 3.1.1.2
Evaluate the limit of the numerator.
Step 3.1.1.2.1
Evaluate the limit.
Step 3.1.1.2.1.1
Split the limit using the Sum of Limits Rule on the limit as xx approaches ∞∞.
limx→∞1+limx→∞4⋅10xlimx→∞10xlimx→∞1+limx→∞4⋅10xlimx→∞10x
Step 3.1.1.2.1.2
Evaluate the limit of 11 which is constant as xx approaches ∞∞.
1+limx→∞4⋅10xlimx→∞10x1+limx→∞4⋅10xlimx→∞10x
1+limx→∞4⋅10xlimx→∞10x1+limx→∞4⋅10xlimx→∞10x
Step 3.1.1.2.2
Since the function 10x10x approaches ∞∞, the positive constant 44 times the function also approaches ∞∞.
Step 3.1.1.2.2.1
Consider the limit with the constant multiple 44 removed.
1+limx→∞10xlimx→∞10x1+limx→∞10xlimx→∞10x
Step 3.1.1.2.2.2
Since the exponent xx approaches ∞∞, the quantity 10x10x approaches ∞∞.
1+∞limx→∞10x1+∞limx→∞10x
1+∞limx→∞10x1+∞limx→∞10x
Step 3.1.1.2.3
Infinity plus or minus a number is infinity.
∞limx→∞10x∞limx→∞10x
∞limx→∞10x∞limx→∞10x
Step 3.1.1.3
Since the exponent xx approaches ∞∞, the quantity 10x10x approaches ∞∞.
∞∞∞∞
Step 3.1.1.4
Infinity divided by infinity is undefined.
Undefined
∞∞∞∞
Step 3.1.2
Since ∞∞∞∞ is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
limx→∞1+4⋅10x10x=limx→∞ddx[1+4⋅10x]ddx[10x]limx→∞1+4⋅10x10x=limx→∞ddx[1+4⋅10x]ddx[10x]
Step 3.1.3
Find the derivative of the numerator and denominator.
Step 3.1.3.1
Differentiate the numerator and denominator.
limx→∞ddx[1+4⋅10x]ddx[10x]limx→∞ddx[1+4⋅10x]ddx[10x]
Step 3.1.3.2
By the Sum Rule, the derivative of 1+4⋅10x1+4⋅10x with respect to xx is ddx[1]+ddx[4⋅10x]ddx[1]+ddx[4⋅10x].
limx→∞ddx[1]+ddx[4⋅10x]ddx[10x]limx→∞ddx[1]+ddx[4⋅10x]ddx[10x]
Step 3.1.3.3
Since 11 is constant with respect to xx, the derivative of 11 with respect to xx is 00.
limx→∞0+ddx[4⋅10x]ddx[10x]limx→∞0+ddx[4⋅10x]ddx[10x]
Step 3.1.3.4
Evaluate ddx[4⋅10x]ddx[4⋅10x].
Step 3.1.3.4.1
Since 44 is constant with respect to xx, the derivative of 4⋅10x4⋅10x with respect to xx is 4ddx[10x]4ddx[10x].
limx→∞0+4ddx[10x]ddx[10x]limx→∞0+4ddx[10x]ddx[10x]
Step 3.1.3.4.2
Differentiate using the Exponential Rule which states that ddx[ax]ddx[ax] is axln(a)axln(a) where aa=1010.
limx→∞0+4⋅10xln(10)ddx[10x]limx→∞0+4⋅10xln(10)ddx[10x]
limx→∞0+4⋅10xln(10)ddx[10x]limx→∞0+4⋅10xln(10)ddx[10x]
Step 3.1.3.5
Add 00 and 4⋅10xln(10)4⋅10xln(10).
limx→∞4⋅10xln(10)ddx[10x]limx→∞4⋅10xln(10)ddx[10x]
Step 3.1.3.6
Differentiate using the Exponential Rule which states that ddx[ax]ddx[ax] is axln(a)axln(a) where aa=1010.
limx→∞4⋅10xln(10)10xln(10)limx→∞4⋅10xln(10)10xln(10)
limx→∞4⋅10xln(10)10xln(10)limx→∞4⋅10xln(10)10xln(10)
Step 3.1.4
Reduce.
Step 3.1.4.1
Cancel the common factor of 10x10x.
Step 3.1.4.1.1
Cancel the common factor.
limx→∞4⋅10xln(10)10xln(10)
Step 3.1.4.1.2
Rewrite the expression.
limx→∞4ln(10)ln(10)
limx→∞4ln(10)ln(10)
Step 3.1.4.2
Cancel the common factor of ln(10).
Step 3.1.4.2.1
Cancel the common factor.
limx→∞4ln(10)ln(10)
Step 3.1.4.2.2
Divide 4 by 1.
limx→∞4
limx→∞4
limx→∞4
limx→∞4
Step 3.2
Evaluate the limit of 4 which is constant as x approaches ∞.
4
4
Step 4
List the horizontal asymptotes:
y=4
Step 5
There is no oblique asymptote because the degree of the numerator is less than or equal to the degree of the denominator.
No Oblique Asymptotes
Step 6
This is the set of all asymptotes.
No Vertical Asymptotes
Horizontal Asymptotes: y=4
No Oblique Asymptotes
Step 7