Pre-Algebra Examples
1+2√22√2-31+2√22√2−3
Step 1
Multiply 1+2√22√2-31+2√22√2−3 by 2√2+32√2+32√2+32√2+3.
1+2√22√2-3⋅2√2+32√2+31+2√22√2−3⋅2√2+32√2+3
Step 2
Step 2.1
Multiply 1+2√22√2-31+2√22√2−3 by 2√2+32√2+32√2+32√2+3.
(1+2√2)(2√2+3)(2√2-3)(2√2+3)(1+2√2)(2√2+3)(2√2−3)(2√2+3)
Step 2.2
Expand the denominator using the FOIL method.
(1+2√2)(2√2+3)4√22+6√2-6√2-9(1+2√2)(2√2+3)4√22+6√2−6√2−9
Step 2.3
Simplify.
(1+2√2)(2√2+3)-1
Step 2.4
Simplify the expression.
Step 2.4.1
Move the negative one from the denominator of (1+2√2)(2√2+3)-1.
-1⋅((1+2√2)(2√2+3))
Step 2.4.2
Rewrite -1⋅((1+2√2)(2√2+3)) as -((1+2√2)(2√2+3)).
-((1+2√2)(2√2+3))
-((1+2√2)(2√2+3))
-((1+2√2)(2√2+3))
Step 3
Step 3.1
Apply the distributive property.
-(1(2√2+3)+2√2(2√2+3))
Step 3.2
Apply the distributive property.
-(1(2√2)+1⋅3+2√2(2√2+3))
Step 3.3
Apply the distributive property.
-(1(2√2)+1⋅3+2√2(2√2)+2√2⋅3)
-(1(2√2)+1⋅3+2√2(2√2)+2√2⋅3)
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply 2√2 by 1.
-(2√2+1⋅3+2√2(2√2)+2√2⋅3)
Step 4.1.2
Multiply 3 by 1.
-(2√2+3+2√2(2√2)+2√2⋅3)
Step 4.1.3
Multiply 2√2(2√2).
Step 4.1.3.1
Multiply 2 by 2.
-(2√2+3+4√2√2+2√2⋅3)
Step 4.1.3.2
Raise √2 to the power of 1.
-(2√2+3+4(√21√2)+2√2⋅3)
Step 4.1.3.3
Raise √2 to the power of 1.
-(2√2+3+4(√21√21)+2√2⋅3)
Step 4.1.3.4
Use the power rule aman=am+n to combine exponents.
-(2√2+3+4√21+1+2√2⋅3)
Step 4.1.3.5
Add 1 and 1.
-(2√2+3+4√22+2√2⋅3)
-(2√2+3+4√22+2√2⋅3)
Step 4.1.4
Rewrite √22 as 2.
Step 4.1.4.1
Use n√ax=axn to rewrite √2 as 212.
-(2√2+3+4(212)2+2√2⋅3)
Step 4.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
-(2√2+3+4⋅212⋅2+2√2⋅3)
Step 4.1.4.3
Combine 12 and 2.
-(2√2+3+4⋅222+2√2⋅3)
Step 4.1.4.4
Cancel the common factor of 2.
Step 4.1.4.4.1
Cancel the common factor.
-(2√2+3+4⋅222+2√2⋅3)
Step 4.1.4.4.2
Rewrite the expression.
-(2√2+3+4⋅21+2√2⋅3)
-(2√2+3+4⋅21+2√2⋅3)
Step 4.1.4.5
Evaluate the exponent.
-(2√2+3+4⋅2+2√2⋅3)
-(2√2+3+4⋅2+2√2⋅3)
Step 4.1.5
Multiply 4 by 2.
-(2√2+3+8+2√2⋅3)
Step 4.1.6
Multiply 3 by 2.
-(2√2+3+8+6√2)
-(2√2+3+8+6√2)
Step 4.2
Add 2√2 and 6√2.
-(3+8+8√2)
Step 4.3
Add 3 and 8.
-(11+8√2)
-(11+8√2)
Step 5
Apply the distributive property.
-1⋅11-(8√2)
Step 6
Step 6.1
Multiply -1 by 11.
-11-(8√2)
Step 6.2
Multiply 8 by -1.
-11-8√2
-11-8√2
Step 7
The result can be shown in multiple forms.
Exact Form:
-11-8√2
Decimal Form:
-22.31370849…