Pre-Algebra Examples
(2x+3)(x2-x-1)(2x+3)(x2−x−1)
Step 1
Expand (2x+3)(x2-x-1)(2x+3)(x2−x−1) by multiplying each term in the first expression by each term in the second expression.
2x⋅x2+2x(-x)+2x⋅-1+3x2+3(-x)+3⋅-12x⋅x2+2x(−x)+2x⋅−1+3x2+3(−x)+3⋅−1
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Multiply xx by x2x2 by adding the exponents.
Step 2.1.1.1
Move x2x2.
2(x2x)+2x(-x)+2x⋅-1+3x2+3(-x)+3⋅-12(x2x)+2x(−x)+2x⋅−1+3x2+3(−x)+3⋅−1
Step 2.1.1.2
Multiply x2x2 by xx.
Step 2.1.1.2.1
Raise xx to the power of 11.
2(x2x1)+2x(-x)+2x⋅-1+3x2+3(-x)+3⋅-12(x2x1)+2x(−x)+2x⋅−1+3x2+3(−x)+3⋅−1
Step 2.1.1.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
2x2+1+2x(-x)+2x⋅-1+3x2+3(-x)+3⋅-12x2+1+2x(−x)+2x⋅−1+3x2+3(−x)+3⋅−1
2x2+1+2x(-x)+2x⋅-1+3x2+3(-x)+3⋅-12x2+1+2x(−x)+2x⋅−1+3x2+3(−x)+3⋅−1
Step 2.1.1.3
Add 22 and 11.
2x3+2x(-x)+2x⋅-1+3x2+3(-x)+3⋅-12x3+2x(−x)+2x⋅−1+3x2+3(−x)+3⋅−1
2x3+2x(-x)+2x⋅-1+3x2+3(-x)+3⋅-12x3+2x(−x)+2x⋅−1+3x2+3(−x)+3⋅−1
Step 2.1.2
Rewrite using the commutative property of multiplication.
2x3+2⋅-1x⋅x+2x⋅-1+3x2+3(-x)+3⋅-12x3+2⋅−1x⋅x+2x⋅−1+3x2+3(−x)+3⋅−1
Step 2.1.3
Multiply xx by xx by adding the exponents.
Step 2.1.3.1
Move xx.
2x3+2⋅-1(x⋅x)+2x⋅-1+3x2+3(-x)+3⋅-12x3+2⋅−1(x⋅x)+2x⋅−1+3x2+3(−x)+3⋅−1
Step 2.1.3.2
Multiply xx by xx.
2x3+2⋅-1x2+2x⋅-1+3x2+3(-x)+3⋅-12x3+2⋅−1x2+2x⋅−1+3x2+3(−x)+3⋅−1
2x3+2⋅-1x2+2x⋅-1+3x2+3(-x)+3⋅-12x3+2⋅−1x2+2x⋅−1+3x2+3(−x)+3⋅−1
Step 2.1.4
Multiply 22 by -1−1.
2x3-2x2+2x⋅-1+3x2+3(-x)+3⋅-12x3−2x2+2x⋅−1+3x2+3(−x)+3⋅−1
Step 2.1.5
Multiply -1−1 by 22.
2x3-2x2-2x+3x2+3(-x)+3⋅-12x3−2x2−2x+3x2+3(−x)+3⋅−1
Step 2.1.6
Multiply -1−1 by 33.
2x3-2x2-2x+3x2-3x+3⋅-12x3−2x2−2x+3x2−3x+3⋅−1
Step 2.1.7
Multiply 33 by -1−1.
2x3-2x2-2x+3x2-3x-32x3−2x2−2x+3x2−3x−3
2x3-2x2-2x+3x2-3x-32x3−2x2−2x+3x2−3x−3
Step 2.2
Simplify by adding terms.
Step 2.2.1
Add -2x2−2x2 and 3x23x2.
2x3+x2-2x-3x-32x3+x2−2x−3x−3
Step 2.2.2
Subtract 3x3x from -2x−2x.
2x3+x2-5x-32x3+x2−5x−3
2x3+x2-5x-32x3+x2−5x−3
2x3+x2-5x-32x3+x2−5x−3