Examples
6x-y+4z=06x−y+4z=0 , x-7y+z=0x−7y+z=0
Step 1
Step 1.1
Move all terms not containing xx to the right side of the equation.
Step 1.1.1
Add yy to both sides of the equation.
6x+4z=y6x+4z=y
x-7y+z=0x−7y+z=0
Step 1.1.2
Subtract 4z4z from both sides of the equation.
6x=y-4z6x=y−4z
x-7y+z=0x−7y+z=0
6x=y-4z6x=y−4z
x-7y+z=0x−7y+z=0
Step 1.2
Divide each term in 6x=y-4z6x=y−4z by 66 and simplify.
Step 1.2.1
Divide each term in 6x=y-4z6x=y−4z by 66.
6x6=y6+-4z66x6=y6+−4z6
x-7y+z=0x−7y+z=0
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of 66.
Step 1.2.2.1.1
Cancel the common factor.
6x6=y6+-4z66x6=y6+−4z6
x-7y+z=0x−7y+z=0
Step 1.2.2.1.2
Divide xx by 11.
x=y6+-4z6x=y6+−4z6
x-7y+z=0x−7y+z=0
x=y6+-4z6x=y6+−4z6
x-7y+z=0x−7y+z=0
x=y6+-4z6x=y6+−4z6
x-7y+z=0x−7y+z=0
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Cancel the common factor of -4−4 and 66.
Step 1.2.3.1.1.1
Factor 22 out of -4z−4z.
x=y6+2(-2z)6x=y6+2(−2z)6
x-7y+z=0x−7y+z=0
Step 1.2.3.1.1.2
Cancel the common factors.
Step 1.2.3.1.1.2.1
Factor 22 out of 66.
x=y6+2(-2z)2(3)x=y6+2(−2z)2(3)
x-7y+z=0x−7y+z=0
Step 1.2.3.1.1.2.2
Cancel the common factor.
x=y6+2(-2z)2⋅3x=y6+2(−2z)2⋅3
x-7y+z=0x−7y+z=0
Step 1.2.3.1.1.2.3
Rewrite the expression.
x=y6+-2z3x=y6+−2z3
x-7y+z=0x−7y+z=0
x=y6+-2z3x=y6+−2z3
x-7y+z=0x−7y+z=0
x=y6+-2z3x=y6+−2z3
x-7y+z=0x−7y+z=0
Step 1.2.3.1.2
Move the negative in front of the fraction.
x=y6-2z3x=y6−2z3
x-7y+z=0x−7y+z=0
x=y6-2z3x=y6−2z3
x-7y+z=0x−7y+z=0
x=y6-2z3x=y6−2z3
x-7y+z=0x−7y+z=0
x=y6-2z3x=y6−2z3
x-7y+z=0x−7y+z=0
x=y6-2z3x=y6−2z3
x-7y+z=0x−7y+z=0
Step 2
Step 2.1
Simplify (y6-2z3)-7y+z(y6−2z3)−7y+z.
Step 2.1.1
To write -7y−7y as a fraction with a common denominator, multiply by 6666.
-2z3+y6-7y⋅66+z=0−2z3+y6−7y⋅66+z=0
x=y6-2z3x=y6−2z3
Step 2.1.2
Simplify terms.
Step 2.1.2.1
Combine -7y−7y and 6666.
-2z3+y6+-7y⋅66+z=0−2z3+y6+−7y⋅66+z=0
x=y6-2z3x=y6−2z3
Step 2.1.2.2
Combine the numerators over the common denominator.
-2z3+y-7y⋅66+z=0−2z3+y−7y⋅66+z=0
x=y6-2z3x=y6−2z3
-2z3+y-7y⋅66+z=0−2z3+y−7y⋅66+z=0
x=y6-2z3x=y6−2z3
Step 2.1.3
Simplify each term.
Step 2.1.3.1
Simplify the numerator.
Step 2.1.3.1.1
Factor yy out of y-7y⋅6y−7y⋅6.
Step 2.1.3.1.1.1
Raise yy to the power of 11.
-2z3+y-7y⋅66+z=0−2z3+y−7y⋅66+z=0
x=y6-2z3x=y6−2z3
Step 2.1.3.1.1.2
Factor yy out of y1y1.
-2z3+y⋅1-7y⋅66+z=0−2z3+y⋅1−7y⋅66+z=0
x=y6-2z3x=y6−2z3
Step 2.1.3.1.1.3
Factor yy out of -7y⋅6−7y⋅6.
-2z3+y⋅1+y(-7⋅6)6+z=0−2z3+y⋅1+y(−7⋅6)6+z=0
x=y6-2z3x=y6−2z3
Step 2.1.3.1.1.4
Factor yy out of y⋅1+y(-7⋅6)y⋅1+y(−7⋅6).
-2z3+y(1-7⋅6)6+z=0−2z3+y(1−7⋅6)6+z=0
x=y6-2z3x=y6−2z3
-2z3+y(1-7⋅6)6+z=0−2z3+y(1−7⋅6)6+z=0
x=y6-2z3x=y6−2z3
Step 2.1.3.1.2
Multiply -7−7 by 66.
-2z3+y(1-42)6+z=0−2z3+y(1−42)6+z=0
x=y6-2z3x=y6−2z3
Step 2.1.3.1.3
Subtract 4242 from 11.
-2z3+y⋅-416+z=0−2z3+y⋅−416+z=0
x=y6-2z3x=y6−2z3
-2z3+y⋅-416+z=0−2z3+y⋅−416+z=0
x=y6-2z3x=y6−2z3
Step 2.1.3.2
Move -41−41 to the left of yy.
-2z3+-41⋅y6+z=0−2z3+−41⋅y6+z=0
x=y6-2z3x=y6−2z3
Step 2.1.3.3
Move the negative in front of the fraction.
-2z3-41y6+z=0−2z3−41y6+z=0
x=y6-2z3x=y6−2z3
-2z3-41y6+z=0−2z3−41y6+z=0
x=y6-2z3x=y6−2z3
Step 2.1.4
To write zz as a fraction with a common denominator, multiply by 3333.
-41y6-2z3+z⋅33=0−41y6−2z3+z⋅33=0
x=y6-2z3x=y6−2z3
Step 2.1.5
Combine zz and 3333.
-41y6-2z3+z⋅33=0−41y6−2z3+z⋅33=0
x=y6-2z3x=y6−2z3
Step 2.1.6
Combine the numerators over the common denominator.
-41y6+-2z+z⋅33=0−41y6+−2z+z⋅33=0
x=y6-2z3x=y6−2z3
Step 2.1.7
Add -2z−2z and z⋅3z⋅3.
Step 2.1.7.1
Reorder zz and 33.
-41y6+-2z+3⋅z3=0−41y6+−2z+3⋅z3=0
x=y6-2z3x=y6−2z3
Step 2.1.7.2
Add -2z−2z and 3⋅z3⋅z.
-41y6+z3=0−41y6+z3=0
x=y6-2z3x=y6−2z3
-41y6+z3=0−41y6+z3=0
x=y6-2z3x=y6−2z3
-41y6+z3=0−41y6+z3=0
x=y6-2z3x=y6−2z3
Step 2.2
Add 41y641y6 to both sides of the equation.
z3=41y6z3=41y6
x=y6-2z3x=y6−2z3
Step 2.3
Multiply both sides of the equation by 33.
3(z3)=3(41y6)3(z3)=3(41y6)
x=y6-2z3x=y6−2z3
Step 2.4
Simplify both sides of the equation.
Step 2.4.1
Simplify the left side.
Step 2.4.1.1
Cancel the common factor of 33.
Step 2.4.1.1.1
Cancel the common factor.
3(z3)=3(41y6)3(z3)=3(41y6)
x=y6-2z3x=y6−2z3
Step 2.4.1.1.2
Rewrite the expression.
z=3(41y6)z=3(41y6)
x=y6-2z3x=y6−2z3
z=3(41y6)z=3(41y6)
x=y6-2z3x=y6−2z3
z=3(41y6)z=3(41y6)
x=y6-2z3x=y6−2z3
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Cancel the common factor of 33.
Step 2.4.2.1.1
Factor 33 out of 66.
z=3(41y3(2))z=3(41y3(2))
x=y6-2z3x=y6−2z3
Step 2.4.2.1.2
Cancel the common factor.
z=3(41y3⋅2)z=3(41y3⋅2)
x=y6-2z3x=y6−2z3
Step 2.4.2.1.3
Rewrite the expression.
z=41y2z=41y2
x=y6-2z3x=y6−2z3
z=41y2z=41y2
x=y6-2z3x=y6−2z3
z=41y2z=41y2
x=y6-2z3x=y6−2z3
z=41y2
x=y6-2z3
z=41y2
x=y6-2z3
Step 3
Step 3.1
Simplify y6-2(41y2)3.
Step 3.1.1
Simplify each term.
Step 3.1.1.1
Combine 2 and 41y2.
x=y6-2(41y)23
z=41y2
Step 3.1.1.2
Multiply 2 by 41.
x=y6-82y23
z=41y2
Step 3.1.1.3
Reduce the expression by cancelling the common factors.
Step 3.1.1.3.1
Reduce the expression 82y2 by cancelling the common factors.
Step 3.1.1.3.1.1
Factor 2 out of 82y.
x=y6-2(41y)23
z=41y2
Step 3.1.1.3.1.2
Factor 2 out of 2.
x=y6-2(41y)2(1)3
z=41y2
Step 3.1.1.3.1.3
Cancel the common factor.
x=y6-2(41y)2⋅13
z=41y2
Step 3.1.1.3.1.4
Rewrite the expression.
x=y6-41y13
z=41y2
x=y6-41y13
z=41y2
Step 3.1.1.3.2
Divide 41y by 1.
x=y6-41y3
z=41y2
x=y6-41y3
z=41y2
x=y6-41y3
z=41y2
Step 3.1.2
To write -41y3 as a fraction with a common denominator, multiply by 22.
x=y6-41y3⋅22
z=41y2
Step 3.1.3
Write each expression with a common denominator of 6, by multiplying each by an appropriate factor of 1.
Step 3.1.3.1
Multiply 41y3 by 22.
x=y6-41y⋅23⋅2
z=41y2
Step 3.1.3.2
Multiply 3 by 2.
x=y6-41y⋅26
z=41y2
x=y6-41y⋅26
z=41y2
Step 3.1.4
Combine the numerators over the common denominator.
x=y-41y⋅26
z=41y2
Step 3.1.5
Simplify the numerator.
Step 3.1.5.1
Factor y out of y-41y⋅2.
Step 3.1.5.1.1
Raise y to the power of 1.
x=y-41y⋅26
z=41y2
Step 3.1.5.1.2
Factor y out of y1.
x=y⋅1-41y⋅26
z=41y2
Step 3.1.5.1.3
Factor y out of -41y⋅2.
x=y⋅1+y(-41⋅2)6
z=41y2
Step 3.1.5.1.4
Factor y out of y⋅1+y(-41⋅2).
x=y(1-41⋅2)6
z=41y2
x=y(1-41⋅2)6
z=41y2
Step 3.1.5.2
Multiply -41 by 2.
x=y(1-82)6
z=41y2
Step 3.1.5.3
Subtract 82 from 1.
x=y⋅-816
z=41y2
x=y⋅-816
z=41y2
Step 3.1.6
Reduce the expression by cancelling the common factors.
Step 3.1.6.1
Cancel the common factor of -81 and 6.
Step 3.1.6.1.1
Factor 3 out of y⋅-81.
x=3(y⋅-27)6
z=41y2
Step 3.1.6.1.2
Cancel the common factors.
Step 3.1.6.1.2.1
Factor 3 out of 6.
x=3(y⋅-27)3(2)
z=41y2
Step 3.1.6.1.2.2
Cancel the common factor.
x=3(y⋅-27)3⋅2
z=41y2
Step 3.1.6.1.2.3
Rewrite the expression.
x=y⋅-272
z=41y2
x=y⋅-272
z=41y2
x=y⋅-272
z=41y2
Step 3.1.6.2
Simplify the expression.
Step 3.1.6.2.1
Move -27 to the left of y.
x=-27⋅y2
z=41y2
Step 3.1.6.2.2
Move the negative in front of the fraction.
x=-27y2
z=41y2
x=-27y2
z=41y2
x=-27y2
z=41y2
x=-27y2
z=41y2
x=-27y2
z=41y2