Examples
5i+152i-15i+152i−1
Step 1
Multiply the numerator and denominator of 5i+15-1+2i5i+15−1+2i by the conjugate of -1+2i−1+2i to make the denominator real.
5i+15-1+2i⋅-1-2i-1-2i5i+15−1+2i⋅−1−2i−1−2i
Step 2
Step 2.1
Combine.
(5i+15)(-1-2i)(-1+2i)(-1-2i)(5i+15)(−1−2i)(−1+2i)(−1−2i)
Step 2.2
Simplify the numerator.
Step 2.2.1
Expand (5i+15)(-1-2i)(5i+15)(−1−2i) using the FOIL Method.
Step 2.2.1.1
Apply the distributive property.
5i(-1-2i)+15(-1-2i)(-1+2i)(-1-2i)5i(−1−2i)+15(−1−2i)(−1+2i)(−1−2i)
Step 2.2.1.2
Apply the distributive property.
5i⋅-1+5i(-2i)+15(-1-2i)(-1+2i)(-1-2i)5i⋅−1+5i(−2i)+15(−1−2i)(−1+2i)(−1−2i)
Step 2.2.1.3
Apply the distributive property.
5i⋅-1+5i(-2i)+15⋅-1+15(-2i)(-1+2i)(-1-2i)5i⋅−1+5i(−2i)+15⋅−1+15(−2i)(−1+2i)(−1−2i)
5i⋅-1+5i(-2i)+15⋅-1+15(-2i)(-1+2i)(-1-2i)5i⋅−1+5i(−2i)+15⋅−1+15(−2i)(−1+2i)(−1−2i)
Step 2.2.2
Simplify and combine like terms.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply -1−1 by 55.
-5i+5i(-2i)+15⋅-1+15(-2i)(-1+2i)(-1-2i)−5i+5i(−2i)+15⋅−1+15(−2i)(−1+2i)(−1−2i)
Step 2.2.2.1.2
Multiply 5i(-2i)5i(−2i).
Step 2.2.2.1.2.1
Multiply -2−2 by 55.
-5i-10ii+15⋅-1+15(-2i)(-1+2i)(-1-2i)−5i−10ii+15⋅−1+15(−2i)(−1+2i)(−1−2i)
Step 2.2.2.1.2.2
Raise ii to the power of 11.
-5i-10(i1i)+15⋅-1+15(-2i)(-1+2i)(-1-2i)−5i−10(i1i)+15⋅−1+15(−2i)(−1+2i)(−1−2i)
Step 2.2.2.1.2.3
Raise ii to the power of 11.
-5i-10(i1i1)+15⋅-1+15(-2i)(-1+2i)(-1-2i)−5i−10(i1i1)+15⋅−1+15(−2i)(−1+2i)(−1−2i)
Step 2.2.2.1.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
-5i-10i1+1+15⋅-1+15(-2i)(-1+2i)(-1-2i)−5i−10i1+1+15⋅−1+15(−2i)(−1+2i)(−1−2i)
Step 2.2.2.1.2.5
Add 11 and 11.
-5i-10i2+15⋅-1+15(-2i)(-1+2i)(-1-2i)−5i−10i2+15⋅−1+15(−2i)(−1+2i)(−1−2i)
-5i-10i2+15⋅-1+15(-2i)(-1+2i)(-1-2i)−5i−10i2+15⋅−1+15(−2i)(−1+2i)(−1−2i)
Step 2.2.2.1.3
Rewrite i2i2 as -1−1.
-5i-10⋅-1+15⋅-1+15(-2i)(-1+2i)(-1-2i)−5i−10⋅−1+15⋅−1+15(−2i)(−1+2i)(−1−2i)
Step 2.2.2.1.4
Multiply -10−10 by -1−1.
-5i+10+15⋅-1+15(-2i)(-1+2i)(-1-2i)−5i+10+15⋅−1+15(−2i)(−1+2i)(−1−2i)
Step 2.2.2.1.5
Multiply 15 by -1.
-5i+10-15+15(-2i)(-1+2i)(-1-2i)
Step 2.2.2.1.6
Multiply -2 by 15.
-5i+10-15-30i(-1+2i)(-1-2i)
-5i+10-15-30i(-1+2i)(-1-2i)
Step 2.2.2.2
Subtract 30i from -5i.
10-15-35i(-1+2i)(-1-2i)
Step 2.2.2.3
Subtract 15 from 10.
-5-35i(-1+2i)(-1-2i)
-5-35i(-1+2i)(-1-2i)
-5-35i(-1+2i)(-1-2i)
Step 2.3
Simplify the denominator.
Step 2.3.1
Expand (-1+2i)(-1-2i) using the FOIL Method.
Step 2.3.1.1
Apply the distributive property.
-5-35i-1(-1-2i)+2i(-1-2i)
Step 2.3.1.2
Apply the distributive property.
-5-35i-1⋅-1-1(-2i)+2i(-1-2i)
Step 2.3.1.3
Apply the distributive property.
-5-35i-1⋅-1-1(-2i)+2i⋅-1+2i(-2i)
-5-35i-1⋅-1-1(-2i)+2i⋅-1+2i(-2i)
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply -1 by -1.
-5-35i1-1(-2i)+2i⋅-1+2i(-2i)
Step 2.3.2.2
Multiply -2 by -1.
-5-35i1+2i+2i⋅-1+2i(-2i)
Step 2.3.2.3
Multiply -1 by 2.
-5-35i1+2i-2i+2i(-2i)
Step 2.3.2.4
Multiply -2 by 2.
-5-35i1+2i-2i-4ii
Step 2.3.2.5
Raise i to the power of 1.
-5-35i1+2i-2i-4(i1i)
Step 2.3.2.6
Raise i to the power of 1.
-5-35i1+2i-2i-4(i1i1)
Step 2.3.2.7
Use the power rule aman=am+n to combine exponents.
-5-35i1+2i-2i-4i1+1
Step 2.3.2.8
Add 1 and 1.
-5-35i1+2i-2i-4i2
Step 2.3.2.9
Subtract 2i from 2i.
-5-35i1+0-4i2
Step 2.3.2.10
Add 1 and 0.
-5-35i1-4i2
-5-35i1-4i2
Step 2.3.3
Simplify each term.
Step 2.3.3.1
Rewrite i2 as -1.
-5-35i1-4⋅-1
Step 2.3.3.2
Multiply -4 by -1.
-5-35i1+4
-5-35i1+4
Step 2.3.4
Add 1 and 4.
-5-35i5
-5-35i5
-5-35i5
Step 3
Step 3.1
Factor 5 out of -5.
5⋅-1-35i5
Step 3.2
Factor 5 out of -35i.
5⋅-1+5(-7i)5
Step 3.3
Factor 5 out of 5(-1)+5(-7i).
5(-1-7i)5
Step 3.4
Cancel the common factors.
Step 3.4.1
Factor 5 out of 5.
5(-1-7i)5(1)
Step 3.4.2
Cancel the common factor.
5(-1-7i)5⋅1
Step 3.4.3
Rewrite the expression.
-1-7i1
Step 3.4.4
Divide -1-7i by 1.
-1-7i
-1-7i
-1-7i