Examples
x+2y=1x+2y=1 , 4x+5y=134x+5y=13
Step 1
Find the AX=BAX=B from the system of equations.
[1245]⋅[xy]=[113][1245]⋅[xy]=[113]
Step 2
Step 2.1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Step 2.2
Find the determinant.
Step 2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1⋅5-4⋅21⋅5−4⋅2
Step 2.2.2
Simplify the determinant.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 55 by 11.
5-4⋅25−4⋅2
Step 2.2.2.1.2
Multiply -4−4 by 22.
5-85−8
5-85−8
Step 2.2.2.2
Subtract 88 from 55.
-3−3
-3−3
-3−3
Step 2.3
Since the determinant is non-zero, the inverse exists.
Step 2.4
Substitute the known values into the formula for the inverse.
1-3[5-2-41]1−3[5−2−41]
Step 2.5
Move the negative in front of the fraction.
-13[5-2-41]−13[5−2−41]
Step 2.6
Multiply -13−13 by each element of the matrix.
[-13⋅5-13⋅-2-13⋅-4-13⋅1][−13⋅5−13⋅−2−13⋅−4−13⋅1]
Step 2.7
Simplify each element in the matrix.
Step 2.7.1
Multiply -13⋅5−13⋅5.
Step 2.7.1.1
Multiply 55 by -1−1.
[-5(13)-13⋅-2-13⋅-4-13⋅1]⎡⎢⎣−5(13)−13⋅−2−13⋅−4−13⋅1⎤⎥⎦
Step 2.7.1.2
Combine -5−5 and 1313.
[-53-13⋅-2-13⋅-4-13⋅1][−53−13⋅−2−13⋅−4−13⋅1]
[-53-13⋅-2-13⋅-4-13⋅1][−53−13⋅−2−13⋅−4−13⋅1]
Step 2.7.2
Move the negative in front of the fraction.
[-53-13⋅-2-13⋅-4-13⋅1][−53−13⋅−2−13⋅−4−13⋅1]
Step 2.7.3
Multiply -13⋅-2−13⋅−2.
Step 2.7.3.1
Multiply -2−2 by -1−1.
[-532(13)-13⋅-4-13⋅1]⎡⎢⎣−532(13)−13⋅−4−13⋅1⎤⎥⎦
Step 2.7.3.2
Combine 22 and 1313.
[-5323-13⋅-4-13⋅1][−5323−13⋅−4−13⋅1]
[-5323-13⋅-4-13⋅1][−5323−13⋅−4−13⋅1]
Step 2.7.4
Multiply -13⋅-4−13⋅−4.
Step 2.7.4.1
Multiply -4−4 by -1−1.
[-53234(13)-13⋅1]⎡⎢⎣−53234(13)−13⋅1⎤⎥⎦
Step 2.7.4.2
Combine 44 and 1313.
[-532343-13⋅1][−532343−13⋅1]
[-532343-13⋅1][−532343−13⋅1]
Step 2.7.5
Multiply -1−1 by 11.
[-532343-13][−532343−13]
[-532343-13][−532343−13]
[-532343-13][−532343−13]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([-532343-13]⋅[1245])⋅[xy]=[-532343-13]⋅[113]([−532343−13]⋅[1245])⋅[xy]=[−532343−13]⋅[113]
Step 4
Any matrix multiplied by its inverse is equal to 11 all the time. A⋅A-1=1A⋅A−1=1.
[xy]=[-532343-13]⋅[113][xy]=[−532343−13]⋅[113]
Step 5
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×22×2 and the second matrix is 2×12×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[-53⋅1+23⋅1343⋅1-13⋅13][−53⋅1+23⋅1343⋅1−13⋅13]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[7-3][7−3]
[7-3][7−3]
Step 6
Simplify the left and right side.
[xy]=[7-3]
Step 7
Find the solution.
x=7
y=-3