Examples

Find the Cofactor Matrix
[32-11632-40]321163240
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]+++++
Step 2
Use the sign chart and the given matrix to find the cofactor of each element.
Tap for more steps...
Step 2.1
Calculate the minor for element a11a11.
Tap for more steps...
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|63-40|6340
Step 2.1.2
Evaluate the determinant.
Tap for more steps...
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a11=60-(-43)a11=60(43)
Step 2.1.2.2
Simplify the determinant.
Tap for more steps...
Step 2.1.2.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.2.1.1
Multiply 66 by 00.
a11=0-(-43)a11=0(43)
Step 2.1.2.2.1.2
Multiply -(-43)(43).
Tap for more steps...
Step 2.1.2.2.1.2.1
Multiply -44 by 33.
a11=0--12a11=012
Step 2.1.2.2.1.2.2
Multiply -11 by -1212.
a11=0+12a11=0+12
a11=0+12a11=0+12
a11=0+12a11=0+12
Step 2.1.2.2.2
Add 00 and 1212.
a11=12a11=12
a11=12a11=12
a11=12a11=12
a11=12a11=12
Step 2.2
Calculate the minor for element a12a12.
Tap for more steps...
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1320|1320
Step 2.2.2
Evaluate the determinant.
Tap for more steps...
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a12=10-23a12=1023
Step 2.2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.2.1.1
Multiply 00 by 11.
a12=0-23a12=023
Step 2.2.2.2.1.2
Multiply -22 by 33.
a12=0-6a12=06
a12=0-6a12=06
Step 2.2.2.2.2
Subtract 66 from 00.
a12=-6a12=6
a12=-6a12=6
a12=-6a12=6
a12=-6a12=6
Step 2.3
Calculate the minor for element a13a13.
Tap for more steps...
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|162-4|1624
Step 2.3.2
Evaluate the determinant.
Tap for more steps...
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a13=1-4-26a13=1426
Step 2.3.2.2
Simplify the determinant.
Tap for more steps...
Step 2.3.2.2.1
Simplify each term.
Tap for more steps...
Step 2.3.2.2.1.1
Multiply -44 by 11.
a13=-4-26a13=426
Step 2.3.2.2.1.2
Multiply -22 by 66.
a13=-4-12a13=412
a13=-4-12a13=412
Step 2.3.2.2.2
Subtract 1212 from -44.
a13=-16a13=16
a13=-16a13=16
a13=-16a13=16
a13=-16a13=16
Step 2.4
Calculate the minor for element a21a21.
Tap for more steps...
Step 2.4.1
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|2-1-40|2140
Step 2.4.2
Evaluate the determinant.
Tap for more steps...
Step 2.4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a21=20-(-4-1)a21=20(41)
Step 2.4.2.2
Simplify the determinant.
Tap for more steps...
Step 2.4.2.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.2.1.1
Multiply 22 by 00.
a21=0-(-4-1)a21=0(41)
Step 2.4.2.2.1.2
Multiply -(-4-1)(41).
Tap for more steps...
Step 2.4.2.2.1.2.1
Multiply -44 by -11.
a21=0-14a21=014
Step 2.4.2.2.1.2.2
Multiply -11 by 44.
a21=0-4a21=04
a21=0-4a21=04
a21=0-4a21=04
Step 2.4.2.2.2
Subtract 44 from 00.
a21=-4a21=4
a21=-4a21=4
a21=-4a21=4
a21=-4a21=4
Step 2.5
Calculate the minor for element a22a22.
Tap for more steps...
Step 2.5.1
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|3-120|3120
Step 2.5.2
Evaluate the determinant.
Tap for more steps...
Step 2.5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a22=30-2-1a22=3021
Step 2.5.2.2
Simplify the determinant.
Tap for more steps...
Step 2.5.2.2.1
Simplify each term.
Tap for more steps...
Step 2.5.2.2.1.1
Multiply 33 by 00.
a22=0-2-1a22=021
Step 2.5.2.2.1.2
Multiply -22 by -11.
a22=0+2a22=0+2
a22=0+2a22=0+2
Step 2.5.2.2.2
Add 00 and 22.
a22=2a22=2
a22=2a22=2
a22=2a22=2
a22=2a22=2
Step 2.6
Calculate the minor for element a23a23.
Tap for more steps...
Step 2.6.1
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|322-4|3224
Step 2.6.2
Evaluate the determinant.
Tap for more steps...
Step 2.6.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a23=3-4-22a23=3422
Step 2.6.2.2
Simplify the determinant.
Tap for more steps...
Step 2.6.2.2.1
Simplify each term.
Tap for more steps...
Step 2.6.2.2.1.1
Multiply 33 by -44.
a23=-12-22a23=1222
Step 2.6.2.2.1.2
Multiply -22 by 22.
a23=-12-4a23=124
a23=-12-4a23=124
Step 2.6.2.2.2
Subtract 44 from -1212.
a23=-16a23=16
a23=-16a23=16
a23=-16a23=16
a23=-16a23=16
Step 2.7
Calculate the minor for element a31a31.
Tap for more steps...
Step 2.7.1
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|2-163|2163
Step 2.7.2
Evaluate the determinant.
Tap for more steps...
Step 2.7.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a31=23-6-1a31=2361
Step 2.7.2.2
Simplify the determinant.
Tap for more steps...
Step 2.7.2.2.1
Simplify each term.
Tap for more steps...
Step 2.7.2.2.1.1
Multiply 22 by 33.
a31=6-6-1a31=661
Step 2.7.2.2.1.2
Multiply -66 by -11.
a31=6+6a31=6+6
a31=6+6a31=6+6
Step 2.7.2.2.2
Add 66 and 66.
a31=12a31=12
a31=12a31=12
a31=12a31=12
a31=12a31=12
Step 2.8
Calculate the minor for element a32a32.
Tap for more steps...
Step 2.8.1
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|3-113|3113
Step 2.8.2
Evaluate the determinant.
Tap for more steps...
Step 2.8.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a32=33-1-1a32=3311
Step 2.8.2.2
Simplify the determinant.
Tap for more steps...
Step 2.8.2.2.1
Simplify each term.
Tap for more steps...
Step 2.8.2.2.1.1
Multiply 33 by 33.
a32=9-1-1a32=911
Step 2.8.2.2.1.2
Multiply -11 by -11.
a32=9+1a32=9+1
a32=9+1a32=9+1
Step 2.8.2.2.2
Add 99 and 11.
a32=10a32=10
a32=10a32=10
a32=10a32=10
a32=10a32=10
Step 2.9
Calculate the minor for element a33a33.
Tap for more steps...
Step 2.9.1
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|3216|3216
Step 2.9.2
Evaluate the determinant.
Tap for more steps...
Step 2.9.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a33=36-12a33=3612
Step 2.9.2.2
Simplify the determinant.
Tap for more steps...
Step 2.9.2.2.1
Simplify each term.
Tap for more steps...
Step 2.9.2.2.1.1
Multiply 33 by 66.
a33=18-12a33=1812
Step 2.9.2.2.1.2
Multiply -11 by 22.
a33=18-2a33=182
a33=18-2a33=182
Step 2.9.2.2.2
Subtract 22 from 1818.
a33=16a33=16
a33=16a33=16
a33=16a33=16
a33=16a33=16
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[126-16421612-1016]126164216121016
[126-16421612-1016]126164216121016
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay