Examples

Find the Vertex Form
4x2+9y2+8x+54y+52=3
Step 1
Move all terms not containing a variable to the right side of the equation.
Tap for more steps...
Step 1.1
Subtract 52 from both sides of the equation.
4x2+9y2+8x+54y=3-52
Step 1.2
Subtract 52 from 3.
4x2+9y2+8x+54y=-49
4x2+9y2+8x+54y=-49
Step 2
Complete the square for 4x2+8x.
Tap for more steps...
Step 2.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=4
b=8
c=0
Step 2.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 2.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 2.3.1
Substitute the values of a and b into the formula d=b2a.
d=824
Step 2.3.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.1
Cancel the common factor of 8 and 2.
Tap for more steps...
Step 2.3.2.1.1
Factor 2 out of 8.
d=2424
Step 2.3.2.1.2
Cancel the common factors.
Tap for more steps...
Step 2.3.2.1.2.1
Factor 2 out of 24.
d=242(4)
Step 2.3.2.1.2.2
Cancel the common factor.
d=2424
Step 2.3.2.1.2.3
Rewrite the expression.
d=44
d=44
d=44
Step 2.3.2.2
Cancel the common factor of 4.
Tap for more steps...
Step 2.3.2.2.1
Cancel the common factor.
d=44
Step 2.3.2.2.2
Rewrite the expression.
d=1
d=1
d=1
d=1
Step 2.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 2.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-8244
Step 2.4.2
Simplify the right side.
Tap for more steps...
Step 2.4.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.1.1
Raise 8 to the power of 2.
e=0-6444
Step 2.4.2.1.2
Multiply 4 by 4.
e=0-6416
Step 2.4.2.1.3
Divide 64 by 16.
e=0-14
Step 2.4.2.1.4
Multiply -1 by 4.
e=0-4
e=0-4
Step 2.4.2.2
Subtract 4 from 0.
e=-4
e=-4
e=-4
Step 2.5
Substitute the values of a, d, and e into the vertex form 4(x+1)2-4.
4(x+1)2-4
4(x+1)2-4
Step 3
Substitute 4(x+1)2-4 for 4x2+8x in the equation 4x2+9y2+8x+54y=-49.
4(x+1)2-4+9y2+54y=-49
Step 4
Move -4 to the right side of the equation by adding 4 to both sides.
4(x+1)2+9y2+54y=-49+4
Step 5
Complete the square for 9y2+54y.
Tap for more steps...
Step 5.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=9
b=54
c=0
Step 5.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 5.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 5.3.1
Substitute the values of a and b into the formula d=b2a.
d=5429
Step 5.3.2
Simplify the right side.
Tap for more steps...
Step 5.3.2.1
Cancel the common factor of 54 and 2.
Tap for more steps...
Step 5.3.2.1.1
Factor 2 out of 54.
d=22729
Step 5.3.2.1.2
Cancel the common factors.
Tap for more steps...
Step 5.3.2.1.2.1
Factor 2 out of 29.
d=2272(9)
Step 5.3.2.1.2.2
Cancel the common factor.
d=22729
Step 5.3.2.1.2.3
Rewrite the expression.
d=279
d=279
d=279
Step 5.3.2.2
Cancel the common factor of 27 and 9.
Tap for more steps...
Step 5.3.2.2.1
Factor 9 out of 27.
d=939
Step 5.3.2.2.2
Cancel the common factors.
Tap for more steps...
Step 5.3.2.2.2.1
Factor 9 out of 9.
d=939(1)
Step 5.3.2.2.2.2
Cancel the common factor.
d=9391
Step 5.3.2.2.2.3
Rewrite the expression.
d=31
Step 5.3.2.2.2.4
Divide 3 by 1.
d=3
d=3
d=3
d=3
d=3
Step 5.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 5.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-54249
Step 5.4.2
Simplify the right side.
Tap for more steps...
Step 5.4.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.1
Raise 54 to the power of 2.
e=0-291649
Step 5.4.2.1.2
Multiply 4 by 9.
e=0-291636
Step 5.4.2.1.3
Divide 2916 by 36.
e=0-181
Step 5.4.2.1.4
Multiply -1 by 81.
e=0-81
e=0-81
Step 5.4.2.2
Subtract 81 from 0.
e=-81
e=-81
e=-81
Step 5.5
Substitute the values of a, d, and e into the vertex form 9(y+3)2-81.
9(y+3)2-81
9(y+3)2-81
Step 6
Substitute 9(y+3)2-81 for 9y2+54y in the equation 4x2+9y2+8x+54y=-49.
4(x+1)2+9(y+3)2-81=-49+4
Step 7
Move -81 to the right side of the equation by adding 81 to both sides.
4(x+1)2+9(y+3)2=-49+4+81
Step 8
Simplify -49+4+81.
Tap for more steps...
Step 8.1
Add -49 and 4.
4(x+1)2+9(y+3)2=-45+81
Step 8.2
Add -45 and 81.
4(x+1)2+9(y+3)2=36
4(x+1)2+9(y+3)2=36
Step 9
Divide each term by 36 to make the right side equal to one.
4(x+1)236+9(y+3)236=3636
Step 10
Simplify each term in the equation in order to set the right side equal to 1. The standard form of an ellipse or hyperbola requires the right side of the equation be 1.
(x+1)29+(y+3)24=1
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay