Examples
4x2+9y2+8x+54y+52=3
Step 1
Step 1.1
Subtract 52 from both sides of the equation.
4x2+9y2+8x+54y=3-52
Step 1.2
Subtract 52 from 3.
4x2+9y2+8x+54y=-49
4x2+9y2+8x+54y=-49
Step 2
Step 2.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=4
b=8
c=0
Step 2.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 2.3
Find the value of d using the formula d=b2a.
Step 2.3.1
Substitute the values of a and b into the formula d=b2a.
d=82⋅4
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Cancel the common factor of 8 and 2.
Step 2.3.2.1.1
Factor 2 out of 8.
d=2⋅42⋅4
Step 2.3.2.1.2
Cancel the common factors.
Step 2.3.2.1.2.1
Factor 2 out of 2⋅4.
d=2⋅42(4)
Step 2.3.2.1.2.2
Cancel the common factor.
d=2⋅42⋅4
Step 2.3.2.1.2.3
Rewrite the expression.
d=44
d=44
d=44
Step 2.3.2.2
Cancel the common factor of 4.
Step 2.3.2.2.1
Cancel the common factor.
d=44
Step 2.3.2.2.2
Rewrite the expression.
d=1
d=1
d=1
d=1
Step 2.4
Find the value of e using the formula e=c-b24a.
Step 2.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-824⋅4
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Simplify each term.
Step 2.4.2.1.1
Raise 8 to the power of 2.
e=0-644⋅4
Step 2.4.2.1.2
Multiply 4 by 4.
e=0-6416
Step 2.4.2.1.3
Divide 64 by 16.
e=0-1⋅4
Step 2.4.2.1.4
Multiply -1 by 4.
e=0-4
e=0-4
Step 2.4.2.2
Subtract 4 from 0.
e=-4
e=-4
e=-4
Step 2.5
Substitute the values of a, d, and e into the vertex form 4(x+1)2-4.
4(x+1)2-4
4(x+1)2-4
Step 3
Substitute 4(x+1)2-4 for 4x2+8x in the equation 4x2+9y2+8x+54y=-49.
4(x+1)2-4+9y2+54y=-49
Step 4
Move -4 to the right side of the equation by adding 4 to both sides.
4(x+1)2+9y2+54y=-49+4
Step 5
Step 5.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=9
b=54
c=0
Step 5.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 5.3
Find the value of d using the formula d=b2a.
Step 5.3.1
Substitute the values of a and b into the formula d=b2a.
d=542⋅9
Step 5.3.2
Simplify the right side.
Step 5.3.2.1
Cancel the common factor of 54 and 2.
Step 5.3.2.1.1
Factor 2 out of 54.
d=2⋅272⋅9
Step 5.3.2.1.2
Cancel the common factors.
Step 5.3.2.1.2.1
Factor 2 out of 2⋅9.
d=2⋅272(9)
Step 5.3.2.1.2.2
Cancel the common factor.
d=2⋅272⋅9
Step 5.3.2.1.2.3
Rewrite the expression.
d=279
d=279
d=279
Step 5.3.2.2
Cancel the common factor of 27 and 9.
Step 5.3.2.2.1
Factor 9 out of 27.
d=9⋅39
Step 5.3.2.2.2
Cancel the common factors.
Step 5.3.2.2.2.1
Factor 9 out of 9.
d=9⋅39(1)
Step 5.3.2.2.2.2
Cancel the common factor.
d=9⋅39⋅1
Step 5.3.2.2.2.3
Rewrite the expression.
d=31
Step 5.3.2.2.2.4
Divide 3 by 1.
d=3
d=3
d=3
d=3
d=3
Step 5.4
Find the value of e using the formula e=c-b24a.
Step 5.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-5424⋅9
Step 5.4.2
Simplify the right side.
Step 5.4.2.1
Simplify each term.
Step 5.4.2.1.1
Raise 54 to the power of 2.
e=0-29164⋅9
Step 5.4.2.1.2
Multiply 4 by 9.
e=0-291636
Step 5.4.2.1.3
Divide 2916 by 36.
e=0-1⋅81
Step 5.4.2.1.4
Multiply -1 by 81.
e=0-81
e=0-81
Step 5.4.2.2
Subtract 81 from 0.
e=-81
e=-81
e=-81
Step 5.5
Substitute the values of a, d, and e into the vertex form 9(y+3)2-81.
9(y+3)2-81
9(y+3)2-81
Step 6
Substitute 9(y+3)2-81 for 9y2+54y in the equation 4x2+9y2+8x+54y=-49.
4(x+1)2+9(y+3)2-81=-49+4
Step 7
Move -81 to the right side of the equation by adding 81 to both sides.
4(x+1)2+9(y+3)2=-49+4+81
Step 8
Step 8.1
Add -49 and 4.
4(x+1)2+9(y+3)2=-45+81
Step 8.2
Add -45 and 81.
4(x+1)2+9(y+3)2=36
4(x+1)2+9(y+3)2=36
Step 9
Divide each term by 36 to make the right side equal to one.
4(x+1)236+9(y+3)236=3636
Step 10
Simplify each term in the equation in order to set the right side equal to 1. The standard form of an ellipse or hyperbola requires the right side of the equation be 1.
(x+1)29+(y+3)24=1