Examples
x2-y2+4x-8y=0x2−y2+4x−8y=0
Step 1
Step 1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=4b=4
c=0c=0
Step 1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=42⋅1d=42⋅1
Step 1.3.2
Cancel the common factor of 44 and 22.
Step 1.3.2.1
Factor 22 out of 44.
d=2⋅22⋅1d=2⋅22⋅1
Step 1.3.2.2
Cancel the common factors.
Step 1.3.2.2.1
Factor 22 out of 2⋅12⋅1.
d=2⋅22(1)d=2⋅22(1)
Step 1.3.2.2.2
Cancel the common factor.
d=2⋅22⋅1
Step 1.3.2.2.3
Rewrite the expression.
d=21
Step 1.3.2.2.4
Divide 2 by 1.
d=2
d=2
d=2
d=2
Step 1.4
Find the value of e using the formula e=c-b24a.
Step 1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-424⋅1
Step 1.4.2
Simplify the right side.
Step 1.4.2.1
Simplify each term.
Step 1.4.2.1.1
Cancel the common factor of 42 and 4.
Step 1.4.2.1.1.1
Factor 4 out of 42.
e=0-4⋅44⋅1
Step 1.4.2.1.1.2
Cancel the common factors.
Step 1.4.2.1.1.2.1
Factor 4 out of 4⋅1.
e=0-4⋅44(1)
Step 1.4.2.1.1.2.2
Cancel the common factor.
e=0-4⋅44⋅1
Step 1.4.2.1.1.2.3
Rewrite the expression.
e=0-41
Step 1.4.2.1.1.2.4
Divide 4 by 1.
e=0-1⋅4
e=0-1⋅4
e=0-1⋅4
Step 1.4.2.1.2
Multiply -1 by 4.
e=0-4
e=0-4
Step 1.4.2.2
Subtract 4 from 0.
e=-4
e=-4
e=-4
Step 1.5
Substitute the values of a, d, and e into the vertex form (x+2)2-4.
(x+2)2-4
(x+2)2-4
Step 2
Substitute (x+2)2-4 for x2+4x in the equation x2-y2+4x-8y=0.
(x+2)2-4-y2-8y=0
Step 3
Move -4 to the right side of the equation by adding 4 to both sides.
(x+2)2-y2-8y=0+4
Step 4
Step 4.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=-1
b=-8
c=0
Step 4.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 4.3
Find the value of d using the formula d=b2a.
Step 4.3.1
Substitute the values of a and b into the formula d=b2a.
d=-82⋅-1
Step 4.3.2
Simplify the right side.
Step 4.3.2.1
Cancel the common factor of -8 and 2.
Step 4.3.2.1.1
Factor 2 out of -8.
d=2⋅-42⋅-1
Step 4.3.2.1.2
Move the negative one from the denominator of -4-1.
d=-1⋅-4
d=-1⋅-4
Step 4.3.2.2
Rewrite -1⋅-4 as --4.
d=--4
Step 4.3.2.3
Multiply -1 by -4.
d=4
d=4
d=4
Step 4.4
Find the value of e using the formula e=c-b24a.
Step 4.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-8)24⋅-1
Step 4.4.2
Simplify the right side.
Step 4.4.2.1
Simplify each term.
Step 4.4.2.1.1
Raise -8 to the power of 2.
e=0-644⋅-1
Step 4.4.2.1.2
Multiply 4 by -1.
e=0-64-4
Step 4.4.2.1.3
Divide 64 by -4.
e=0--16
Step 4.4.2.1.4
Multiply -1 by -16.
e=0+16
e=0+16
Step 4.4.2.2
Add 0 and 16.
e=16
e=16
e=16
Step 4.5
Substitute the values of a, d, and e into the vertex form -(y+4)2+16.
-(y+4)2+16
-(y+4)2+16
Step 5
Substitute -(y+4)2+16 for -y2-8y in the equation x2-y2+4x-8y=0.
(x+2)2-(y+4)2+16=0+4
Step 6
Move 16 to the right side of the equation by adding 16 to both sides.
(x+2)2-(y+4)2=0+4-16
Step 7
Step 7.1
Add 0 and 4.
(x+2)2-(y+4)2=4-16
Step 7.2
Subtract 16 from 4.
(x+2)2-(y+4)2=-12
(x+2)2-(y+4)2=-12
Step 8
Flip the sign on each term of the equation so the term on the right side is positive.
-(x+2)2+(y+4)2=12
Step 9
Divide each term by 12 to make the right side equal to one.
-(x+2)212+(y+4)212=1212
Step 10
Simplify each term in the equation in order to set the right side equal to 1. The standard form of an ellipse or hyperbola requires the right side of the equation be 1.
(y+4)212-(x+2)212=1