Examples

Find the Vertex Form
x2-y2+4x-8y=0x2y2+4x8y=0
Step 1
Complete the square for x2+4xx2+4x.
Tap for more steps...
Step 1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=4b=4
c=0c=0
Step 1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.3
Find the value of dd using the formula d=b2ad=b2a.
Tap for more steps...
Step 1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=421d=421
Step 1.3.2
Cancel the common factor of 44 and 22.
Tap for more steps...
Step 1.3.2.1
Factor 22 out of 44.
d=2221d=2221
Step 1.3.2.2
Cancel the common factors.
Tap for more steps...
Step 1.3.2.2.1
Factor 22 out of 2121.
d=222(1)d=222(1)
Step 1.3.2.2.2
Cancel the common factor.
d=2221
Step 1.3.2.2.3
Rewrite the expression.
d=21
Step 1.3.2.2.4
Divide 2 by 1.
d=2
d=2
d=2
d=2
Step 1.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-4241
Step 1.4.2
Simplify the right side.
Tap for more steps...
Step 1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.1.1
Cancel the common factor of 42 and 4.
Tap for more steps...
Step 1.4.2.1.1.1
Factor 4 out of 42.
e=0-4441
Step 1.4.2.1.1.2
Cancel the common factors.
Tap for more steps...
Step 1.4.2.1.1.2.1
Factor 4 out of 41.
e=0-444(1)
Step 1.4.2.1.1.2.2
Cancel the common factor.
e=0-4441
Step 1.4.2.1.1.2.3
Rewrite the expression.
e=0-41
Step 1.4.2.1.1.2.4
Divide 4 by 1.
e=0-14
e=0-14
e=0-14
Step 1.4.2.1.2
Multiply -1 by 4.
e=0-4
e=0-4
Step 1.4.2.2
Subtract 4 from 0.
e=-4
e=-4
e=-4
Step 1.5
Substitute the values of a, d, and e into the vertex form (x+2)2-4.
(x+2)2-4
(x+2)2-4
Step 2
Substitute (x+2)2-4 for x2+4x in the equation x2-y2+4x-8y=0.
(x+2)2-4-y2-8y=0
Step 3
Move -4 to the right side of the equation by adding 4 to both sides.
(x+2)2-y2-8y=0+4
Step 4
Complete the square for -y2-8y.
Tap for more steps...
Step 4.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=-1
b=-8
c=0
Step 4.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 4.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 4.3.1
Substitute the values of a and b into the formula d=b2a.
d=-82-1
Step 4.3.2
Simplify the right side.
Tap for more steps...
Step 4.3.2.1
Cancel the common factor of -8 and 2.
Tap for more steps...
Step 4.3.2.1.1
Factor 2 out of -8.
d=2-42-1
Step 4.3.2.1.2
Move the negative one from the denominator of -4-1.
d=-1-4
d=-1-4
Step 4.3.2.2
Rewrite -1-4 as --4.
d=--4
Step 4.3.2.3
Multiply -1 by -4.
d=4
d=4
d=4
Step 4.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 4.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-8)24-1
Step 4.4.2
Simplify the right side.
Tap for more steps...
Step 4.4.2.1
Simplify each term.
Tap for more steps...
Step 4.4.2.1.1
Raise -8 to the power of 2.
e=0-644-1
Step 4.4.2.1.2
Multiply 4 by -1.
e=0-64-4
Step 4.4.2.1.3
Divide 64 by -4.
e=0--16
Step 4.4.2.1.4
Multiply -1 by -16.
e=0+16
e=0+16
Step 4.4.2.2
Add 0 and 16.
e=16
e=16
e=16
Step 4.5
Substitute the values of a, d, and e into the vertex form -(y+4)2+16.
-(y+4)2+16
-(y+4)2+16
Step 5
Substitute -(y+4)2+16 for -y2-8y in the equation x2-y2+4x-8y=0.
(x+2)2-(y+4)2+16=0+4
Step 6
Move 16 to the right side of the equation by adding 16 to both sides.
(x+2)2-(y+4)2=0+4-16
Step 7
Simplify 0+4-16.
Tap for more steps...
Step 7.1
Add 0 and 4.
(x+2)2-(y+4)2=4-16
Step 7.2
Subtract 16 from 4.
(x+2)2-(y+4)2=-12
(x+2)2-(y+4)2=-12
Step 8
Flip the sign on each term of the equation so the term on the right side is positive.
-(x+2)2+(y+4)2=12
Step 9
Divide each term by 12 to make the right side equal to one.
-(x+2)212+(y+4)212=1212
Step 10
Simplify each term in the equation in order to set the right side equal to 1. The standard form of an ellipse or hyperbola requires the right side of the equation be 1.
(y+4)212-(x+2)212=1
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay