Examples

Find the Vertex Form
x2+4x+2y+y2=9x2+4x+2y+y2=9
Step 1
Complete the square for x2+4xx2+4x.
Tap for more steps...
Step 1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=4b=4
c=0c=0
Step 1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.3
Find the value of dd using the formula d=b2ad=b2a.
Tap for more steps...
Step 1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=421d=421
Step 1.3.2
Cancel the common factor of 44 and 22.
Tap for more steps...
Step 1.3.2.1
Factor 22 out of 44.
d=2221d=2221
Step 1.3.2.2
Cancel the common factors.
Tap for more steps...
Step 1.3.2.2.1
Factor 22 out of 2121.
d=222(1)d=222(1)
Step 1.3.2.2.2
Cancel the common factor.
d=2221
Step 1.3.2.2.3
Rewrite the expression.
d=21
Step 1.3.2.2.4
Divide 2 by 1.
d=2
d=2
d=2
d=2
Step 1.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-4241
Step 1.4.2
Simplify the right side.
Tap for more steps...
Step 1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.1.1
Cancel the common factor of 42 and 4.
Tap for more steps...
Step 1.4.2.1.1.1
Factor 4 out of 42.
e=0-4441
Step 1.4.2.1.1.2
Cancel the common factors.
Tap for more steps...
Step 1.4.2.1.1.2.1
Factor 4 out of 41.
e=0-444(1)
Step 1.4.2.1.1.2.2
Cancel the common factor.
e=0-4441
Step 1.4.2.1.1.2.3
Rewrite the expression.
e=0-41
Step 1.4.2.1.1.2.4
Divide 4 by 1.
e=0-14
e=0-14
e=0-14
Step 1.4.2.1.2
Multiply -1 by 4.
e=0-4
e=0-4
Step 1.4.2.2
Subtract 4 from 0.
e=-4
e=-4
e=-4
Step 1.5
Substitute the values of a, d, and e into the vertex form (x+2)2-4.
(x+2)2-4
(x+2)2-4
Step 2
Substitute (x+2)2-4 for x2+4x in the equation x2+4x+2y+y2=9.
(x+2)2-4+2y+y2=9
Step 3
Move -4 to the right side of the equation by adding 4 to both sides.
(x+2)2+2y+y2=9+4
Step 4
Complete the square for 2y+y2.
Tap for more steps...
Step 4.1
Reorder 2y and y2.
y2+2y
Step 4.2
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=2
c=0
Step 4.3
Consider the vertex form of a parabola.
a(x+d)2+e
Step 4.4
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 4.4.1
Substitute the values of a and b into the formula d=b2a.
d=221
Step 4.4.2
Cancel the common factor of 2.
Tap for more steps...
Step 4.4.2.1
Cancel the common factor.
d=221
Step 4.4.2.2
Rewrite the expression.
d=1
d=1
d=1
Step 4.5
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 4.5.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-2241
Step 4.5.2
Simplify the right side.
Tap for more steps...
Step 4.5.2.1
Simplify each term.
Tap for more steps...
Step 4.5.2.1.1
Raise 2 to the power of 2.
e=0-441
Step 4.5.2.1.2
Multiply 4 by 1.
e=0-44
Step 4.5.2.1.3
Cancel the common factor of 4.
Tap for more steps...
Step 4.5.2.1.3.1
Cancel the common factor.
e=0-44
Step 4.5.2.1.3.2
Rewrite the expression.
e=0-11
e=0-11
Step 4.5.2.1.4
Multiply -1 by 1.
e=0-1
e=0-1
Step 4.5.2.2
Subtract 1 from 0.
e=-1
e=-1
e=-1
Step 4.6
Substitute the values of a, d, and e into the vertex form (y+1)2-1.
(y+1)2-1
(y+1)2-1
Step 5
Substitute (y+1)2-1 for 2y+y2 in the equation x2+4x+2y+y2=9.
(x+2)2+(y+1)2-1=9+4
Step 6
Move -1 to the right side of the equation by adding 1 to both sides.
(x+2)2+(y+1)2=9+4+1
Step 7
Simplify 9+4+1.
Tap for more steps...
Step 7.1
Add 9 and 4.
(x+2)2+(y+1)2=13+1
Step 7.2
Add 13 and 1.
(x+2)2+(y+1)2=14
(x+2)2+(y+1)2=14
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay