Examples
f(x)=x2-10x+25f(x)=x2−10x+25
Step 1
Write f(x)=x2-10x+25f(x)=x2−10x+25 as an equation.
y=x2-10x+25y=x2−10x+25
Step 2
Step 2.1
Complete the square for x2-10x+25x2−10x+25.
Step 2.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-10b=−10
c=25c=25
Step 2.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 2.1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 2.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-102⋅1d=−102⋅1
Step 2.1.3.2
Cancel the common factor of -10−10 and 22.
Step 2.1.3.2.1
Factor 22 out of -10−10.
d=2⋅-52⋅1d=2⋅−52⋅1
Step 2.1.3.2.2
Cancel the common factors.
Step 2.1.3.2.2.1
Factor 22 out of 2⋅12⋅1.
d=2⋅-52(1)d=2⋅−52(1)
Step 2.1.3.2.2.2
Cancel the common factor.
d=2⋅-52⋅1
Step 2.1.3.2.2.3
Rewrite the expression.
d=-51
Step 2.1.3.2.2.4
Divide -5 by 1.
d=-5
d=-5
d=-5
d=-5
Step 2.1.4
Find the value of e using the formula e=c-b24a.
Step 2.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=25-(-10)24⋅1
Step 2.1.4.2
Simplify the right side.
Step 2.1.4.2.1
Simplify each term.
Step 2.1.4.2.1.1
Raise -10 to the power of 2.
e=25-1004⋅1
Step 2.1.4.2.1.2
Multiply 4 by 1.
e=25-1004
Step 2.1.4.2.1.3
Divide 100 by 4.
e=25-1⋅25
Step 2.1.4.2.1.4
Multiply -1 by 25.
e=25-25
e=25-25
Step 2.1.4.2.2
Subtract 25 from 25.
e=0
e=0
e=0
Step 2.1.5
Substitute the values of a, d, and e into the vertex form (x-5)2+0.
(x-5)2+0
(x-5)2+0
Step 2.2
Set y equal to the new right side.
y=(x-5)2+0
y=(x-5)2+0
Step 3
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=1
h=5
k=0
Step 4
Since the value of a is positive, the parabola opens up.
Opens Up
Step 5
Find the vertex (h,k).
(5,0)
Step 6
Step 6.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 6.2
Substitute the value of a into the formula.
14⋅1
Step 6.3
Cancel the common factor of 1.
Step 6.3.1
Cancel the common factor.
14⋅1
Step 6.3.2
Rewrite the expression.
14
14
14
Step 7
Step 7.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 7.2
Substitute the known values of h, p, and k into the formula and simplify.
(5,14)
(5,14)
Step 8
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=5
Step 9
Step 9.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 9.2
Substitute the known values of p and k into the formula and simplify.
y=-14
y=-14
Step 10
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (5,0)
Focus: (5,14)
Axis of Symmetry: x=5
Directrix: y=-14
Step 11