Examples
2(x-6)2-(y-2)2=162(x−6)2−(y−2)2=16
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Rewrite (x-6)2(x−6)2 as (x-6)(x-6)(x−6)(x−6).
2((x-6)(x-6))-(y-2)2=162((x−6)(x−6))−(y−2)2=16
Step 1.1.2
Expand (x-6)(x-6)(x−6)(x−6) using the FOIL Method.
Step 1.1.2.1
Apply the distributive property.
2(x(x-6)-6(x-6))-(y-2)2=162(x(x−6)−6(x−6))−(y−2)2=16
Step 1.1.2.2
Apply the distributive property.
2(x⋅x+x⋅-6-6(x-6))-(y-2)2=162(x⋅x+x⋅−6−6(x−6))−(y−2)2=16
Step 1.1.2.3
Apply the distributive property.
2(x⋅x+x⋅-6-6x-6⋅-6)-(y-2)2=162(x⋅x+x⋅−6−6x−6⋅−6)−(y−2)2=16
2(x⋅x+x⋅-6-6x-6⋅-6)-(y-2)2=162(x⋅x+x⋅−6−6x−6⋅−6)−(y−2)2=16
Step 1.1.3
Simplify and combine like terms.
Step 1.1.3.1
Simplify each term.
Step 1.1.3.1.1
Multiply xx by xx.
2(x2+x⋅-6-6x-6⋅-6)-(y-2)2=162(x2+x⋅−6−6x−6⋅−6)−(y−2)2=16
Step 1.1.3.1.2
Move -6−6 to the left of xx.
2(x2-6⋅x-6x-6⋅-6)-(y-2)2=162(x2−6⋅x−6x−6⋅−6)−(y−2)2=16
Step 1.1.3.1.3
Multiply -6−6 by -6−6.
2(x2-6x-6x+36)-(y-2)2=162(x2−6x−6x+36)−(y−2)2=16
2(x2-6x-6x+36)-(y-2)2=162(x2−6x−6x+36)−(y−2)2=16
Step 1.1.3.2
Subtract 6x6x from -6x−6x.
2(x2-12x+36)-(y-2)2=162(x2−12x+36)−(y−2)2=16
2(x2-12x+36)-(y-2)2=162(x2−12x+36)−(y−2)2=16
Step 1.1.4
Apply the distributive property.
2x2+2(-12x)+2⋅36-(y-2)2=162x2+2(−12x)+2⋅36−(y−2)2=16
Step 1.1.5
Simplify.
Step 1.1.5.1
Multiply -12−12 by 22.
2x2-24x+2⋅36-(y-2)2=162x2−24x+2⋅36−(y−2)2=16
Step 1.1.5.2
Multiply 22 by 3636.
2x2-24x+72-(y-2)2=162x2−24x+72−(y−2)2=16
2x2-24x+72-(y-2)2=162x2−24x+72−(y−2)2=16
Step 1.1.6
Rewrite (y-2)2(y−2)2 as (y-2)(y-2)(y−2)(y−2).
2x2-24x+72-((y-2)(y-2))=162x2−24x+72−((y−2)(y−2))=16
Step 1.1.7
Expand (y-2)(y-2)(y−2)(y−2) using the FOIL Method.
Step 1.1.7.1
Apply the distributive property.
2x2-24x+72-(y(y-2)-2(y-2))=162x2−24x+72−(y(y−2)−2(y−2))=16
Step 1.1.7.2
Apply the distributive property.
2x2-24x+72-(y⋅y+y⋅-2-2(y-2))=162x2−24x+72−(y⋅y+y⋅−2−2(y−2))=16
Step 1.1.7.3
Apply the distributive property.
2x2-24x+72-(y⋅y+y⋅-2-2y-2⋅-2)=162x2−24x+72−(y⋅y+y⋅−2−2y−2⋅−2)=16
2x2-24x+72-(y⋅y+y⋅-2-2y-2⋅-2)=162x2−24x+72−(y⋅y+y⋅−2−2y−2⋅−2)=16
Step 1.1.8
Simplify and combine like terms.
Step 1.1.8.1
Simplify each term.
Step 1.1.8.1.1
Multiply yy by yy.
2x2-24x+72-(y2+y⋅-2-2y-2⋅-2)=162x2−24x+72−(y2+y⋅−2−2y−2⋅−2)=16
Step 1.1.8.1.2
Move -2−2 to the left of yy.
2x2-24x+72-(y2-2⋅y-2y-2⋅-2)=162x2−24x+72−(y2−2⋅y−2y−2⋅−2)=16
Step 1.1.8.1.3
Multiply -2−2 by -2−2.
2x2-24x+72-(y2-2y-2y+4)=162x2−24x+72−(y2−2y−2y+4)=16
2x2-24x+72-(y2-2y-2y+4)=162x2−24x+72−(y2−2y−2y+4)=16
Step 1.1.8.2
Subtract 2y2y from -2y−2y.
2x2-24x+72-(y2-4y+4)=162x2−24x+72−(y2−4y+4)=16
2x2-24x+72-(y2-4y+4)=162x2−24x+72−(y2−4y+4)=16
Step 1.1.9
Apply the distributive property.
2x2-24x+72-y2-(-4y)-1⋅4=162x2−24x+72−y2−(−4y)−1⋅4=16
Step 1.1.10
Simplify.
Step 1.1.10.1
Multiply -4−4 by -1−1.
2x2-24x+72-y2+4y-1⋅4=162x2−24x+72−y2+4y−1⋅4=16
Step 1.1.10.2
Multiply -1−1 by 44.
2x2-24x+72-y2+4y-4=162x2−24x+72−y2+4y−4=16
2x2-24x+72-y2+4y-4=162x2−24x+72−y2+4y−4=16
2x2-24x+72-y2+4y-4=162x2−24x+72−y2+4y−4=16
Step 1.2
Simplify the expression.
Step 1.2.1
Subtract 44 from 7272.
2x2-24x-y2+4y+68=162x2−24x−y2+4y+68=16
Step 1.2.2
Move -24x−24x.
2x2-y2-24x+4y+68=162x2−y2−24x+4y+68=16
2x2-y2-24x+4y+68=162x2−y2−24x+4y+68=16
2x2-y2-24x+4y+68=162x2−y2−24x+4y+68=16
Step 2
Step 2.1
Subtract 1616 from both sides of the equation.
2x2-y2-24x+4y+68-16=02x2−y2−24x+4y+68−16=0
Step 2.2
Subtract 1616 from 6868.
2x2-y2-24x+4y+52=02x2−y2−24x+4y+52=0
2x2-y2-24x+4y+52=02x2−y2−24x+4y+52=0