Examples
(1,2)(1,2) , (4,2)(4,2) , (5,2)(5,2)
Step 1
There are two general equations for an ellipse.
Horizontal ellipse equation (x-h)2a2+(y-k)2b2=1(x−h)2a2+(y−k)2b2=1
Vertical ellipse equation (y-k)2a2+(x-h)2b2=1(y−k)2a2+(x−h)2b2=1
Step 2
Step 2.1
Use the distance formula to determine the distance between the two points.
Distance=√(x2-x1)2+(y2-y1)2Distance=√(x2−x1)2+(y2−y1)2
Step 2.2
Substitute the actual values of the points into the distance formula.
a=√(5-1)2+(2-2)2a=√(5−1)2+(2−2)2
Step 2.3
Simplify.
Step 2.3.1
Subtract 11 from 55.
a=√42+(2-2)2a=√42+(2−2)2
Step 2.3.2
Raise 44 to the power of 22.
a=√16+(2-2)2a=√16+(2−2)2
Step 2.3.3
Subtract 22 from 22.
a=√16+02a=√16+02
Step 2.3.4
Raising 00 to any positive power yields 00.
a=√16+0a=√16+0
Step 2.3.5
Add 1616 and 00.
a=√16a=√16
Step 2.3.6
Rewrite 1616 as 4242.
a=√42a=√42
Step 2.3.7
Pull terms out from under the radical, assuming positive real numbers.
a=4a=4
a=4a=4
a=4a=4
Step 3
Step 3.1
Use the distance formula to determine the distance between the two points.
Distance=√(x2-x1)2+(y2-y1)2Distance=√(x2−x1)2+(y2−y1)2
Step 3.2
Substitute the actual values of the points into the distance formula.
c=√(4-1)2+(2-2)2c=√(4−1)2+(2−2)2
Step 3.3
Simplify.
Step 3.3.1
Subtract 11 from 44.
c=√32+(2-2)2c=√32+(2−2)2
Step 3.3.2
Raise 33 to the power of 22.
c=√9+(2-2)2c=√9+(2−2)2
Step 3.3.3
Subtract 22 from 22.
c=√9+02c=√9+02
Step 3.3.4
Raising 00 to any positive power yields 00.
c=√9+0c=√9+0
Step 3.3.5
Add 99 and 00.
c=√9c=√9
Step 3.3.6
Rewrite 99 as 3232.
c=√32c=√32
Step 3.3.7
Pull terms out from under the radical, assuming positive real numbers.
c=3c=3
c=3c=3
c=3c=3
Step 4
Step 4.1
Rewrite the equation as (4)2-b2=32(4)2−b2=32.
(4)2-b2=32(4)2−b2=32
Step 4.2
Raise 44 to the power of 22.
16-b2=3216−b2=32
Step 4.3
Raise 33 to the power of 22.
16-b2=916−b2=9
Step 4.4
Move all terms not containing bb to the right side of the equation.
Step 4.4.1
Subtract 1616 from both sides of the equation.
-b2=9-16−b2=9−16
Step 4.4.2
Subtract 1616 from 99.
-b2=-7−b2=−7
-b2=-7−b2=−7
Step 4.5
Divide each term in -b2=-7−b2=−7 by -1−1 and simplify.
Step 4.5.1
Divide each term in -b2=-7−b2=−7 by -1−1.
-b2-1=-7-1−b2−1=−7−1
Step 4.5.2
Simplify the left side.
Step 4.5.2.1
Dividing two negative values results in a positive value.
b21=-7-1b21=−7−1
Step 4.5.2.2
Divide b2b2 by 11.
b2=-7-1b2=−7−1
b2=-7-1b2=−7−1
Step 4.5.3
Simplify the right side.
Step 4.5.3.1
Divide -7−7 by -1−1.
b2=7b2=7
b2=7b2=7
b2=7b2=7
Step 4.6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
b=±√7b=±√7
Step 4.7
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.7.1
First, use the positive value of the ±± to find the first solution.
b=√7b=√7
Step 4.7.2
Next, use the negative value of the ±± to find the second solution.
b=-√7b=−√7
Step 4.7.3
The complete solution is the result of both the positive and negative portions of the solution.
b=√7,-√7b=√7,−√7
b=√7,-√7b=√7,−√7
b=√7,-√7b=√7,−√7
Step 5
bb is a distance, which means it should be a positive number.
b=√7b=√7
Step 6
Step 6.1
Slope is equal to the change in yy over the change in xx, or rise over run.
m=change in ychange in xm=change in ychange in x
Step 6.2
The change in xx is equal to the difference in x-coordinates (also called run), and the change in yy is equal to the difference in y-coordinates (also called rise).
m=y2-y1x2-x1m=y2−y1x2−x1
Step 6.3
Substitute in the values of xx and yy into the equation to find the slope.
m=2-(2)1-(4)m=2−(2)1−(4)
Step 6.4
Simplify.
Step 6.4.1
Simplify the numerator.
Step 6.4.1.1
Multiply -1−1 by 22.
m=2-21-(4)m=2−21−(4)
Step 6.4.1.2
Subtract 22 from 22.
m=01-(4)m=01−(4)
m=01-(4)m=01−(4)
Step 6.4.2
Simplify the denominator.
Step 6.4.2.1
Multiply -1−1 by 44.
m=01-4m=01−4
Step 6.4.2.2
Subtract 44 from 11.
m=0-3m=0−3
m=0-3m=0−3
Step 6.4.3
Divide 00 by -3−3.
m=0m=0
m=0m=0
Step 6.5
The general equation for a horizontal ellipse is (x-h)2a2+(y-k)2b2=1(x−h)2a2+(y−k)2b2=1.
(x-h)2a2+(y-k)2b2=1(x−h)2a2+(y−k)2b2=1
(x-h)2a2+(y-k)2b2=1(x−h)2a2+(y−k)2b2=1
Step 7
Substitute the values h=1h=1, k=2k=2, a=4a=4, and b=√7b=√7 into (x-h)2a2+(y-k)2b2=1(x−h)2a2+(y−k)2b2=1 to get the ellipse equation (x-(1))2(4)2+(y-(2))2(√7)2=1(x−(1))2(4)2+(y−(2))2(√7)2=1.
(x-(1))2(4)2+(y-(2))2(√7)2=1(x−(1))2(4)2+(y−(2))2(√7)2=1
Step 8
Step 8.1
Multiply -1−1 by 11.
(x-1)242+(y-(2))2(√7)2=1(x−1)242+(y−(2))2(√7)2=1
Step 8.2
Raise 44 to the power of 22.
(x-1)216+(y-(2))2(√7)2=1(x−1)216+(y−(2))2(√7)2=1
Step 8.3
Multiply -1−1 by 22.
(x-1)216+(y-2)2√72=1(x−1)216+(y−2)2√72=1
Step 8.4
Rewrite √72√72 as 77.
Step 8.4.1
Use n√ax=axnn√ax=axn to rewrite √7√7 as 712712.
(x-1)216+(y-2)2(712)2=1(x−1)216+(y−2)2(712)2=1
Step 8.4.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(x-1)216+(y-2)2712⋅2=1(x−1)216+(y−2)2712⋅2=1
Step 8.4.3
Combine 1212 and 22.
(x-1)216+(y-2)2722=1(x−1)216+(y−2)2722=1
Step 8.4.4
Cancel the common factor of 22.
Step 8.4.4.1
Cancel the common factor.
(x-1)216+(y-2)2722=1
Step 8.4.4.2
Rewrite the expression.
(x-1)216+(y-2)27=1
(x-1)216+(y-2)27=1
Step 8.4.5
Evaluate the exponent.
(x-1)216+(y-2)27=1
(x-1)216+(y-2)27=1
(x-1)216+(y-2)27=1
Step 9