Mathway
Visit Mathway on the web
Start 7-day free trial on the app
Start 7-day free trial on the app
Download free on Amazon
Download free in Windows Store
Take a photo of your math problem on the app
get
Go
Enter a problem...
Upgrade
Calculators
About
Help
Sign In
Sign Up
Examples
Step-by-Step Examples
Algebra Concepts and Expressions
Expand Using the Trinomial Theorem
(
a
+
b
+
c
)
3
(
a
+
b
+
c
)
3
Step 1
Use the
trinomial
expansion theorem to find each
term
. The
trinomial
theorem states
(
a
+
b
+
c
)
n
=
n
∑
m
=
0
m
∑
k
=
0
n
C
m
m
C
k
a
n
−
m
b
m
−
k
c
k
(
a
+
b
+
c
)
n
=
∑
m
=
0
n
∑
k
=
0
m
C
m
n
C
k
m
a
n
-
m
b
m
-
k
c
k
where
n
C
m
m
C
k
=
n
!
(
n
−
m
)
!
(
m
−
k
)
!
k
!
C
m
n
C
k
m
=
n
!
(
n
-
m
)
!
(
m
-
k
)
!
k
!
.
3
∑
m
=
0
m
∑
k
=
0
3
!
(
3
−
m
)
!
(
m
−
k
)
!
k
!
a
3
−
m
b
m
−
k
c
k
∑
m
=
0
3
∑
k
=
0
m
3
!
(
3
-
m
)
!
(
m
-
k
)
!
k
!
a
3
-
m
b
m
-
k
c
k
Step 2
Expand the summation.
3
!
(
3
+
0
)
!
(
0
+
0
)
!
0
!
a
3
−
0
b
0
−
0
c
0
+
3
!
(
3
−
1
)
!
(
1
+
0
)
!
0
!
a
3
−
1
⋅
1
b
1
−
0
c
0
+
…
+
3
!
(
3
−
3
)
!
(
3
−
3
)
!
3
!
a
3
−
1
⋅
3
b
3
−
1
⋅
3
c
3
3
!
(
3
+
0
)
!
(
0
+
0
)
!
0
!
a
3
-
0
b
0
-
0
c
0
+
3
!
(
3
-
1
)
!
(
1
+
0
)
!
0
!
a
3
-
1
⋅
1
b
1
-
0
c
0
+
…
+
3
!
(
3
-
3
)
!
(
3
-
3
)
!
3
!
a
3
-
1
⋅
3
b
3
-
1
⋅
3
c
3
Step 3
Simplify the result.
a
3
+
3
a
2
b
+
3
a
2
c
+
3
a
b
2
+
6
a
b
c
+
3
a
c
2
+
b
3
+
3
b
2
c
+
3
b
c
2
+
c
3
a
3
+
3
a
2
b
+
3
a
2
c
+
3
a
b
2
+
6
a
b
c
+
3
a
c
2
+
b
3
+
3
b
2
c
+
3
b
c
2
+
c
3
Enter YOUR Problem
Mathway requires javascript and a modern browser.
⎡
⎢
⎣
x
2
1
2
√
π
∫
x
d
x
⎤
⎥
⎦
[
x
2
1
2
π
∫
x
d
x
]
Please ensure that your password is at least 8 characters and contains each of the following:
a number
a letter
a special character: @$#!%*?&