Examples

(5,7,0) , (5,10,6)
Step 1
To find the distance between two 3d points, square the difference of the x, y, and z points. Then, sum them and take the square root.
(x2-x1)2+(y2-y1)2+(z2-z1)2
Step 2
Replace x1, x2, y1, y2, z1, and z2 with the corresponding values.
Distance=(5-5)2+(10-7)2+(6+0)2
Step 3
Simplify the expression (5-5)2+(10-7)2+(6+0)2.
Tap for more steps...
Step 3.1
Subtract 5 from 5.
Distance=02+(10-7)2+(6+0)2
Step 3.2
Raising 0 to any positive power yields 0.
Distance=0+(10-7)2+(6+0)2
Step 3.3
Subtract 7 from 10.
Distance=0+32+(6+0)2
Step 3.4
Raise 3 to the power of 2.
Distance=0+9+(6+0)2
Step 3.5
Add 6 and 0.
Distance=0+9+62
Step 3.6
Raise 6 to the power of 2.
Distance=0+9+36
Step 3.7
Add 0 and 9.
Distance=9+36
Step 3.8
Add 9 and 36.
Distance=45
Step 3.9
Rewrite 45 as 325.
Tap for more steps...
Step 3.9.1
Factor 9 out of 45.
Distance=9(5)
Step 3.9.2
Rewrite 9 as 32.
Distance=325
Distance=325
Step 3.10
Pull terms out from under the radical.
Distance=35
Distance=35
Step 4
The distance between (5,7,0) and (5,10,6) is 35.
356.70820393
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay