Linear Algebra Examples
a=[103]a=[103] , b=[111]b=[111]
Step 1
Step 1.1
The dot product of two vectors is the sum of the products of the their components.
b⃗⋅a⃗=1⋅1+1⋅0+1⋅3b⃗⋅a⃗=1⋅1+1⋅0+1⋅3
Step 1.2
Simplify.
Step 1.2.1
Simplify each term.
Step 1.2.1.1
Multiply 11 by 11.
b⃗⋅a⃗=1+1⋅0+1⋅3b⃗⋅a⃗=1+1⋅0+1⋅3
Step 1.2.1.2
Multiply 00 by 11.
b⃗⋅a⃗=1+0+1⋅3b⃗⋅a⃗=1+0+1⋅3
Step 1.2.1.3
Multiply 33 by 11.
b⃗⋅a⃗=1+0+3b⃗⋅a⃗=1+0+3
b⃗⋅a⃗=1+0+3b⃗⋅a⃗=1+0+3
Step 1.2.2
Add 11 and 00.
b⃗⋅a⃗=1+3b⃗⋅a⃗=1+3
Step 1.2.3
Add 11 and 33.
b⃗⋅a⃗=4b⃗⋅a⃗=4
b⃗⋅a⃗=4b⃗⋅a⃗=4
b⃗⋅a⃗=4b⃗⋅a⃗=4
Step 2
Step 2.1
The norm is the square root of the sum of squares of each element in the vector.
||a⃗||=√12+02+32||a⃗||=√12+02+32
Step 2.2
Simplify.
Step 2.2.1
One to any power is one.
||a⃗||=√1+02+32||a⃗||=√1+02+32
Step 2.2.2
Raising 00 to any positive power yields 00.
||a⃗||=√1+0+32||a⃗||=√1+0+32
Step 2.2.3
Raise 33 to the power of 22.
||a⃗||=√1+0+9||a⃗||=√1+0+9
Step 2.2.4
Add 11 and 00.
||a⃗||=√1+9||a⃗||=√1+9
Step 2.2.5
Add 11 and 99.
||a⃗||=√10||a⃗||=√10
||a⃗||=√10||a⃗||=√10
||a⃗||=√10||a⃗||=√10
Step 3
Find the projection of b⃗b⃗ onto a⃗a⃗ using the projection formula.
proja⃗(b⃗)=b⃗⋅a⃗||a⃗||2×a⃗proja⃗(b⃗)=b⃗⋅a⃗||a⃗||2×a⃗
Step 4
Substitute 44 for b⃗⋅a⃗b⃗⋅a⃗.
proja⃗(b⃗)=4||a⃗||2×a⃗proja⃗(b⃗)=4||a⃗||2×a⃗
Step 5
Substitute √10√10 for ||a⃗||||a⃗||.
proja⃗(b⃗)=4√102×a⃗proja⃗(b⃗)=4√102×a⃗
Step 6
Substitute [103][103] for a⃗a⃗.
proja⃗(b⃗)=4√102×[103]proja⃗(b⃗)=4√102×[103]
Step 7
Step 7.1
Rewrite √102√102 as 1010.
Step 7.1.1
Use n√ax=axnn√ax=axn to rewrite √10√10 as 10121012.
proja⃗(b⃗)=4(1012)2×[103]proja⃗(b⃗)=4(1012)2×[103]
Step 7.1.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
proja⃗(b⃗)=41012⋅2×[103]proja⃗(b⃗)=41012⋅2×[103]
Step 7.1.3
Combine 1212 and 22.
proja⃗(b⃗)=41022×[103]proja⃗(b⃗)=41022×[103]
Step 7.1.4
Cancel the common factor of 22.
Step 7.1.4.1
Cancel the common factor.
proja⃗(b⃗)=41022×[103]
Step 7.1.4.2
Rewrite the expression.
proja⃗(b⃗)=4101×[103]
proja⃗(b⃗)=4101×[103]
Step 7.1.5
Evaluate the exponent.
proja⃗(b⃗)=410×[103]
proja⃗(b⃗)=410×[103]
Step 7.2
Cancel the common factor of 4 and 10.
Step 7.2.1
Factor 2 out of 4.
proja⃗(b⃗)=2(2)10×[103]
Step 7.2.2
Cancel the common factors.
Step 7.2.2.1
Factor 2 out of 10.
proja⃗(b⃗)=2⋅22⋅5×[103]
Step 7.2.2.2
Cancel the common factor.
proja⃗(b⃗)=2⋅22⋅5×[103]
Step 7.2.2.3
Rewrite the expression.
proja⃗(b⃗)=25×[103]
proja⃗(b⃗)=25×[103]
proja⃗(b⃗)=25×[103]
Step 7.3
Multiply 25 by each element of the matrix.
proja⃗(b⃗)=[25⋅125⋅025⋅3]
Step 7.4
Simplify each element in the matrix.
Step 7.4.1
Multiply 25 by 1.
proja⃗(b⃗)=[2525⋅025⋅3]
Step 7.4.2
Multiply 25 by 0.
proja⃗(b⃗)=[25025⋅3]
Step 7.4.3
Multiply 25⋅3.
Step 7.4.3.1
Combine 25 and 3.
proja⃗(b⃗)=[2502⋅35]
Step 7.4.3.2
Multiply 2 by 3.
proja⃗(b⃗)=[25065]
proja⃗(b⃗)=[25065]
proja⃗(b⃗)=[25065]
proja⃗(b⃗)=[25065]