Linear Algebra Examples

Find the Projection of a Onto b
a=[103]a=[103] , b=[111]b=[111]
Step 1
Find the dot product.
Tap for more steps...
Step 1.1
The dot product of two vectors is the sum of the products of the their components.
b⃗a⃗=11+10+13b⃗a⃗=11+10+13
Step 1.2
Simplify.
Tap for more steps...
Step 1.2.1
Simplify each term.
Tap for more steps...
Step 1.2.1.1
Multiply 11 by 11.
b⃗a⃗=1+10+13b⃗a⃗=1+10+13
Step 1.2.1.2
Multiply 00 by 11.
b⃗a⃗=1+0+13b⃗a⃗=1+0+13
Step 1.2.1.3
Multiply 33 by 11.
b⃗a⃗=1+0+3b⃗a⃗=1+0+3
b⃗a⃗=1+0+3b⃗a⃗=1+0+3
Step 1.2.2
Add 11 and 00.
b⃗a⃗=1+3b⃗a⃗=1+3
Step 1.2.3
Add 11 and 33.
b⃗a⃗=4b⃗a⃗=4
b⃗a⃗=4b⃗a⃗=4
b⃗a⃗=4b⃗a⃗=4
Step 2
Find the norm of a⃗=[103]a⃗=[103].
Tap for more steps...
Step 2.1
The norm is the square root of the sum of squares of each element in the vector.
||a⃗||=12+02+32||a⃗||=12+02+32
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
One to any power is one.
||a⃗||=1+02+32||a⃗||=1+02+32
Step 2.2.2
Raising 00 to any positive power yields 00.
||a⃗||=1+0+32||a⃗||=1+0+32
Step 2.2.3
Raise 33 to the power of 22.
||a⃗||=1+0+9||a⃗||=1+0+9
Step 2.2.4
Add 11 and 00.
||a⃗||=1+9||a⃗||=1+9
Step 2.2.5
Add 11 and 99.
||a⃗||=10||a⃗||=10
||a⃗||=10||a⃗||=10
||a⃗||=10||a⃗||=10
Step 3
Find the projection of b⃗b⃗ onto a⃗a⃗ using the projection formula.
proja⃗(b⃗)=b⃗a⃗||a⃗||2×a⃗proja⃗(b⃗)=b⃗a⃗||a⃗||2×a⃗
Step 4
Substitute 44 for b⃗a⃗b⃗a⃗.
proja⃗(b⃗)=4||a⃗||2×a⃗proja⃗(b⃗)=4||a⃗||2×a⃗
Step 5
Substitute 1010 for ||a⃗||||a⃗||.
proja⃗(b⃗)=4102×a⃗proja⃗(b⃗)=4102×a⃗
Step 6
Substitute [103][103] for a⃗a⃗.
proja⃗(b⃗)=4102×[103]proja⃗(b⃗)=4102×[103]
Step 7
Simplify the right side.
Tap for more steps...
Step 7.1
Rewrite 102102 as 1010.
Tap for more steps...
Step 7.1.1
Use nax=axnnax=axn to rewrite 1010 as 10121012.
proja⃗(b⃗)=4(1012)2×[103]proja⃗(b⃗)=4(1012)2×[103]
Step 7.1.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
proja⃗(b⃗)=410122×[103]proja⃗(b⃗)=410122×[103]
Step 7.1.3
Combine 1212 and 22.
proja⃗(b⃗)=41022×[103]proja⃗(b⃗)=41022×[103]
Step 7.1.4
Cancel the common factor of 22.
Tap for more steps...
Step 7.1.4.1
Cancel the common factor.
proja⃗(b⃗)=41022×[103]
Step 7.1.4.2
Rewrite the expression.
proja⃗(b⃗)=4101×[103]
proja⃗(b⃗)=4101×[103]
Step 7.1.5
Evaluate the exponent.
proja⃗(b⃗)=410×[103]
proja⃗(b⃗)=410×[103]
Step 7.2
Cancel the common factor of 4 and 10.
Tap for more steps...
Step 7.2.1
Factor 2 out of 4.
proja⃗(b⃗)=2(2)10×[103]
Step 7.2.2
Cancel the common factors.
Tap for more steps...
Step 7.2.2.1
Factor 2 out of 10.
proja⃗(b⃗)=2225×[103]
Step 7.2.2.2
Cancel the common factor.
proja⃗(b⃗)=2225×[103]
Step 7.2.2.3
Rewrite the expression.
proja⃗(b⃗)=25×[103]
proja⃗(b⃗)=25×[103]
proja⃗(b⃗)=25×[103]
Step 7.3
Multiply 25 by each element of the matrix.
proja⃗(b⃗)=[251250253]
Step 7.4
Simplify each element in the matrix.
Tap for more steps...
Step 7.4.1
Multiply 25 by 1.
proja⃗(b⃗)=[25250253]
Step 7.4.2
Multiply 25 by 0.
proja⃗(b⃗)=[250253]
Step 7.4.3
Multiply 253.
Tap for more steps...
Step 7.4.3.1
Combine 25 and 3.
proja⃗(b⃗)=[250235]
Step 7.4.3.2
Multiply 2 by 3.
proja⃗(b⃗)=[25065]
proja⃗(b⃗)=[25065]
proja⃗(b⃗)=[25065]
proja⃗(b⃗)=[25065]
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay