Linear Algebra Examples

Find the Distance Between the Vectors
[102] , [11-1]
Step 1
The distance between two vectors u⃗ and v⃗ in n is defined to be ||u⃗-v⃗|| which is the Euclidean norm of the difference u⃗-v⃗.
d(u⃗,v⃗)=||u⃗-v⃗||=(u⃗1-v⃗1)2+(u⃗2-v⃗2)2++(u⃗n-v⃗n)2
Step 2
Find the norm of the difference u⃗-v⃗ where u⃗=[102] and v⃗=[11-1].
Tap for more steps...
Step 2.1
Create a vector of the difference.
[1-10-12+1]
Step 2.2
The norm is the square root of the sum of squares of each element in the vector.
(1-1)2+(0-1)2+(2+1)2
Step 2.3
Simplify.
Tap for more steps...
Step 2.3.1
Subtract 1 from 1.
02+(0-1)2+(2+1)2
Step 2.3.2
Raising 0 to any positive power yields 0.
0+(0-1)2+(2+1)2
Step 2.3.3
Subtract 1 from 0.
0+(-1)2+(2+1)2
Step 2.3.4
Raise -1 to the power of 2.
0+1+(2+1)2
Step 2.3.5
Add 2 and 1.
0+1+32
Step 2.3.6
Raise 3 to the power of 2.
0+1+9
Step 2.3.7
Add 0 and 1.
1+9
Step 2.3.8
Add 1 and 9.
10
10
10
Step 3
The result can be shown in multiple forms.
Exact Form:
10
Decimal Form:
3.16227766
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]