Linear Algebra Examples
[2i-302][2i−302] , [012-i][012−i]
Step 1
The distance between two vectors u⃗u⃗ and v⃗v⃗ in ℂnCn is defined to be ||u⃗-v⃗||||u⃗−v⃗|| which is the Euclidean norm of the difference u⃗-v⃗u⃗−v⃗.
d(u⃗,v⃗)=||u⃗-v⃗||=√|u⃗1-v⃗1|2+|u⃗2-v⃗2|2+…+|u⃗n-v⃗n|2d(u⃗,v⃗)=||u⃗−v⃗||=√|u⃗1−v⃗1|2+|u⃗2−v⃗2|2+…+|u⃗n−v⃗n|2
Step 2
Step 2.1
Create a vector of the difference.
[2i-3-00-12-(2-i)]⎡⎢⎣2i−3−00−12−(2−i)⎤⎥⎦
Step 2.2
The norm is the square root of the sum of squares of each element in the vector.
√|2i-3-0|2+(0-1)2+|2-(2-i)|2√|2i−3−0|2+(0−1)2+|2−(2−i)|2
Step 2.3
Simplify.
Step 2.3.1
Subtract 00 from 2i-32i−3.
√|2i-3|2+(0-1)2+|2-(2-i)|2√|2i−3|2+(0−1)2+|2−(2−i)|2
Step 2.3.2
Rearrange terms.
√|-3+2i|2+(0-1)2+|2-(2-i)|2√|−3+2i|2+(0−1)2+|2−(2−i)|2
Step 2.3.3
Use the formula |a+bi|=√a2+b2|a+bi|=√a2+b2 to find the magnitude.
√√(-3)2+222+(0-1)2+|2-(2-i)|2√√(−3)2+222+(0−1)2+|2−(2−i)|2
Step 2.3.4
Raise -3−3 to the power of 22.
√√9+222+(0-1)2+|2-(2-i)|2√√9+222+(0−1)2+|2−(2−i)|2
Step 2.3.5
Raise 22 to the power of 22.
√√9+42+(0-1)2+|2-(2-i)|2√√9+42+(0−1)2+|2−(2−i)|2
Step 2.3.6
Add 99 and 44.
√√132+(0-1)2+|2-(2-i)|2√√132+(0−1)2+|2−(2−i)|2
Step 2.3.7
Rewrite √132√132 as 1313.
Step 2.3.7.1
Use n√ax=axnn√ax=axn to rewrite √13√13 as 13121312.
√(1312)2+(0-1)2+|2-(2-i)|2√(1312)2+(0−1)2+|2−(2−i)|2
Step 2.3.7.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
√1312⋅2+(0-1)2+|2-(2-i)|2√1312⋅2+(0−1)2+|2−(2−i)|2
Step 2.3.7.3
Combine 1212 and 22.
√1322+(0-1)2+|2-(2-i)|2√1322+(0−1)2+|2−(2−i)|2
Step 2.3.7.4
Cancel the common factor of 22.
Step 2.3.7.4.1
Cancel the common factor.
√1322+(0-1)2+|2-(2-i)|2
Step 2.3.7.4.2
Rewrite the expression.
√131+(0-1)2+|2-(2-i)|2
√131+(0-1)2+|2-(2-i)|2
Step 2.3.7.5
Evaluate the exponent.
√13+(0-1)2+|2-(2-i)|2
√13+(0-1)2+|2-(2-i)|2
Step 2.3.8
Subtract 1 from 0.
√13+(-1)2+|2-(2-i)|2
Step 2.3.9
Raise -1 to the power of 2.
√13+1+|2-(2-i)|2
Step 2.3.10
Simplify each term.
Step 2.3.10.1
Apply the distributive property.
√13+1+|2-1⋅2--i|2
Step 2.3.10.2
Multiply -1 by 2.
√13+1+|2-2--i|2
Step 2.3.10.3
Multiply -1 by -1.
√13+1+|2-2+1i|2
Step 2.3.10.4
Multiply i by 1.
√13+1+|2-2+i|2
√13+1+|2-2+i|2
Step 2.3.11
Subtract 2 from 2.
√13+1+|0+i|2
Step 2.3.12
Add 0 and i.
√13+1+|i|2
Step 2.3.13
Use the formula |a+bi|=√a2+b2 to find the magnitude.
√13+1+√02+122
Step 2.3.14
Raising 0 to any positive power yields 0.
√13+1+√0+122
Step 2.3.15
One to any power is one.
√13+1+√0+12
Step 2.3.16
Add 0 and 1.
√13+1+√12
Step 2.3.17
Any root of 1 is 1.
√13+1+12
Step 2.3.18
One to any power is one.
√13+1+1
Step 2.3.19
Add 13 and 1.
√14+1
Step 2.3.20
Add 14 and 1.
√15
√15
√15
Step 3
The result can be shown in multiple forms.
Exact Form:
√15
Decimal Form:
3.87298334…