Linear Algebra Examples

Find the Distance Between the Vectors
[2i-302][2i302] , [012-i][012i]
Step 1
The distance between two vectors u⃗u⃗ and v⃗v⃗ in nCn is defined to be ||u⃗-v⃗||||u⃗v⃗|| which is the Euclidean norm of the difference u⃗-v⃗u⃗v⃗.
d(u⃗,v⃗)=||u⃗-v⃗||=|u⃗1-v⃗1|2+|u⃗2-v⃗2|2++|u⃗n-v⃗n|2d(u⃗,v⃗)=||u⃗v⃗||=|u⃗1v⃗1|2+|u⃗2v⃗2|2++|u⃗nv⃗n|2
Step 2
Find the norm of the difference u⃗-v⃗u⃗v⃗ where u⃗=[2i-302]u⃗=[2i302] and v⃗=[012-i]v⃗=[012i].
Tap for more steps...
Step 2.1
Create a vector of the difference.
[2i-3-00-12-(2-i)]2i30012(2i)
Step 2.2
The norm is the square root of the sum of squares of each element in the vector.
|2i-3-0|2+(0-1)2+|2-(2-i)|2|2i30|2+(01)2+|2(2i)|2
Step 2.3
Simplify.
Tap for more steps...
Step 2.3.1
Subtract 00 from 2i-32i3.
|2i-3|2+(0-1)2+|2-(2-i)|2|2i3|2+(01)2+|2(2i)|2
Step 2.3.2
Rearrange terms.
|-3+2i|2+(0-1)2+|2-(2-i)|2|3+2i|2+(01)2+|2(2i)|2
Step 2.3.3
Use the formula |a+bi|=a2+b2|a+bi|=a2+b2 to find the magnitude.
(-3)2+222+(0-1)2+|2-(2-i)|2(3)2+222+(01)2+|2(2i)|2
Step 2.3.4
Raise -33 to the power of 22.
9+222+(0-1)2+|2-(2-i)|29+222+(01)2+|2(2i)|2
Step 2.3.5
Raise 22 to the power of 22.
9+42+(0-1)2+|2-(2-i)|29+42+(01)2+|2(2i)|2
Step 2.3.6
Add 99 and 44.
132+(0-1)2+|2-(2-i)|2132+(01)2+|2(2i)|2
Step 2.3.7
Rewrite 132132 as 1313.
Tap for more steps...
Step 2.3.7.1
Use nax=axnnax=axn to rewrite 1313 as 13121312.
(1312)2+(0-1)2+|2-(2-i)|2(1312)2+(01)2+|2(2i)|2
Step 2.3.7.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
13122+(0-1)2+|2-(2-i)|213122+(01)2+|2(2i)|2
Step 2.3.7.3
Combine 1212 and 22.
1322+(0-1)2+|2-(2-i)|21322+(01)2+|2(2i)|2
Step 2.3.7.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.3.7.4.1
Cancel the common factor.
1322+(0-1)2+|2-(2-i)|2
Step 2.3.7.4.2
Rewrite the expression.
131+(0-1)2+|2-(2-i)|2
131+(0-1)2+|2-(2-i)|2
Step 2.3.7.5
Evaluate the exponent.
13+(0-1)2+|2-(2-i)|2
13+(0-1)2+|2-(2-i)|2
Step 2.3.8
Subtract 1 from 0.
13+(-1)2+|2-(2-i)|2
Step 2.3.9
Raise -1 to the power of 2.
13+1+|2-(2-i)|2
Step 2.3.10
Simplify each term.
Tap for more steps...
Step 2.3.10.1
Apply the distributive property.
13+1+|2-12--i|2
Step 2.3.10.2
Multiply -1 by 2.
13+1+|2-2--i|2
Step 2.3.10.3
Multiply -1 by -1.
13+1+|2-2+1i|2
Step 2.3.10.4
Multiply i by 1.
13+1+|2-2+i|2
13+1+|2-2+i|2
Step 2.3.11
Subtract 2 from 2.
13+1+|0+i|2
Step 2.3.12
Add 0 and i.
13+1+|i|2
Step 2.3.13
Use the formula |a+bi|=a2+b2 to find the magnitude.
13+1+02+122
Step 2.3.14
Raising 0 to any positive power yields 0.
13+1+0+122
Step 2.3.15
One to any power is one.
13+1+0+12
Step 2.3.16
Add 0 and 1.
13+1+12
Step 2.3.17
Any root of 1 is 1.
13+1+12
Step 2.3.18
One to any power is one.
13+1+1
Step 2.3.19
Add 13 and 1.
14+1
Step 2.3.20
Add 14 and 1.
15
15
15
Step 3
The result can be shown in multiple forms.
Exact Form:
15
Decimal Form:
3.87298334
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay