Linear Algebra Examples
[2-11]×[5-31]⎡⎢⎣2−11⎤⎥⎦×⎡⎢⎣5−31⎤⎥⎦
Step 1
The cross product of two vectors a⃗a⃗ and b⃗b⃗ can be written as a determinant with the standard unit vectors from ℝ3R3 and the elements of the given vectors.
a⃗×b⃗=|îĵk̂a1a2a3b1b2b3|a⃗×b⃗=∣∣
∣
∣∣îĵk̂a1a2a3b1b2b3∣∣
∣
∣∣
Step 2
Set up the determinant with the given values.
|îĵk̂2-115-31|∣∣
∣
∣∣îĵk̂2−115−31∣∣
∣
∣∣
Step 3
Step 3.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Step 3.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Step 3.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|-11-31|∣∣∣−11−31∣∣∣
Step 3.4
Multiply element a11a11 by its cofactor.
|-11-31|î∣∣∣−11−31∣∣∣î
Step 3.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|2151|∣∣∣2151∣∣∣
Step 3.6
Multiply element a12a12 by its cofactor.
-|2151|ĵ−∣∣∣2151∣∣∣ĵ
Step 3.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|2-15-3|∣∣∣2−15−3∣∣∣
Step 3.8
Multiply element a13a13 by its cofactor.
|2-15-3|k̂∣∣∣2−15−3∣∣∣k̂
Step 3.9
Add the terms together.
|-11-31|î-|2151|ĵ+|2-15-3|k̂∣∣∣−11−31∣∣∣î−∣∣∣2151∣∣∣ĵ+∣∣∣2−15−3∣∣∣k̂
|-11-31|î-|2151|ĵ+|2-15-3|k̂∣∣∣−11−31∣∣∣î−∣∣∣2151∣∣∣ĵ+∣∣∣2−15−3∣∣∣k̂
Step 4
Step 4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
(-1⋅1-(-3⋅1))î-|2151|ĵ+|2-15-3|k̂(−1⋅1−(−3⋅1))î−∣∣∣2151∣∣∣ĵ+∣∣∣2−15−3∣∣∣k̂
Step 4.2
Simplify the determinant.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply -1−1 by 11.
(-1-(-3⋅1))î-|2151|ĵ+|2-15-3|k̂(−1−(−3⋅1))î−∣∣∣2151∣∣∣ĵ+∣∣∣2−15−3∣∣∣k̂
Step 4.2.1.2
Multiply -(-3⋅1)−(−3⋅1).
Step 4.2.1.2.1
Multiply -3−3 by 11.
(-1--3)î-|2151|ĵ+|2-15-3|k̂(−1−−3)î−∣∣∣2151∣∣∣ĵ+∣∣∣2−15−3∣∣∣k̂
Step 4.2.1.2.2
Multiply -1−1 by -3−3.
(-1+3)î-|2151|ĵ+|2-15-3|k̂(−1+3)î−∣∣∣2151∣∣∣ĵ+∣∣∣2−15−3∣∣∣k̂
(-1+3)î-|2151|ĵ+|2-15-3|k̂(−1+3)î−∣∣∣2151∣∣∣ĵ+∣∣∣2−15−3∣∣∣k̂
(-1+3)î-|2151|ĵ+|2-15-3|k̂(−1+3)î−∣∣∣2151∣∣∣ĵ+∣∣∣2−15−3∣∣∣k̂
Step 4.2.2
Add -1−1 and 33.
2î-|2151|ĵ+|2-15-3|k̂2î−∣∣∣2151∣∣∣ĵ+∣∣∣2−15−3∣∣∣k̂
2î-|2151|ĵ+|2-15-3|k̂2î−∣∣∣2151∣∣∣ĵ+∣∣∣2−15−3∣∣∣k̂
2î-|2151|ĵ+|2-15-3|k̂2î−∣∣∣2151∣∣∣ĵ+∣∣∣2−15−3∣∣∣k̂
Step 5
Step 5.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
2î-(2⋅1-5⋅1)ĵ+|2-15-3|k̂
Step 5.2
Simplify the determinant.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Multiply 2 by 1.
2î-(2-5⋅1)ĵ+|2-15-3|k̂
Step 5.2.1.2
Multiply -5 by 1.
2î-(2-5)ĵ+|2-15-3|k̂
2î-(2-5)ĵ+|2-15-3|k̂
Step 5.2.2
Subtract 5 from 2.
2î--3ĵ+|2-15-3|k̂
2î--3ĵ+|2-15-3|k̂
2î--3ĵ+|2-15-3|k̂
Step 6
Step 6.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
2î--3ĵ+(2⋅-3-5⋅-1)k̂
Step 6.2
Simplify the determinant.
Step 6.2.1
Simplify each term.
Step 6.2.1.1
Multiply 2 by -3.
2î--3ĵ+(-6-5⋅-1)k̂
Step 6.2.1.2
Multiply -5 by -1.
2î--3ĵ+(-6+5)k̂
2î--3ĵ+(-6+5)k̂
Step 6.2.2
Add -6 and 5.
2î--3ĵ-k̂
2î--3ĵ-k̂
2î--3ĵ-k̂
Step 7
Multiply -1 by -3.
2î+3ĵ-k̂
Step 8
Rewrite the answer.
[23-1]