Linear Algebra Examples

[2-11]×[5-31]211×531
Step 1
The cross product of two vectors a⃗a⃗ and b⃗b⃗ can be written as a determinant with the standard unit vectors from 3R3 and the elements of the given vectors.
a⃗×b⃗=|a1a2a3b1b2b3|a⃗×b⃗=∣ ∣ ∣a1a2a3b1b2b3∣ ∣ ∣
Step 2
Set up the determinant with the given values.
|2-115-31|∣ ∣ ∣211531∣ ∣ ∣
Step 3
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Tap for more steps...
Step 3.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Step 3.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 3.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|-11-31|1131
Step 3.4
Multiply element a11a11 by its cofactor.
|-11-31|1131
Step 3.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|2151|2151
Step 3.6
Multiply element a12a12 by its cofactor.
-|2151|2151
Step 3.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|2-15-3|2153
Step 3.8
Multiply element a13a13 by its cofactor.
|2-15-3|2153
Step 3.9
Add the terms together.
|-11-31|-|2151|+|2-15-3|11312151+2153
|-11-31|-|2151|+|2-15-3|11312151+2153
Step 4
Evaluate |-11-31|1131.
Tap for more steps...
Step 4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
(-11-(-31))-|2151|+|2-15-3|(11(31))2151+2153
Step 4.2
Simplify the determinant.
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Multiply -11 by 11.
(-1-(-31))-|2151|+|2-15-3|(1(31))2151+2153
Step 4.2.1.2
Multiply -(-31)(31).
Tap for more steps...
Step 4.2.1.2.1
Multiply -33 by 11.
(-1--3)-|2151|+|2-15-3|(13)2151+2153
Step 4.2.1.2.2
Multiply -11 by -33.
(-1+3)-|2151|+|2-15-3|(1+3)2151+2153
(-1+3)-|2151|+|2-15-3|(1+3)2151+2153
(-1+3)-|2151|+|2-15-3|(1+3)2151+2153
Step 4.2.2
Add -11 and 33.
2-|2151|+|2-15-3|22151+2153
2-|2151|+|2-15-3|22151+2153
2-|2151|+|2-15-3|22151+2153
Step 5
Evaluate |2151|2151.
Tap for more steps...
Step 5.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
2-(21-51)+|2-15-3|
Step 5.2
Simplify the determinant.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Multiply 2 by 1.
2-(2-51)+|2-15-3|
Step 5.2.1.2
Multiply -5 by 1.
2-(2-5)+|2-15-3|
2-(2-5)+|2-15-3|
Step 5.2.2
Subtract 5 from 2.
2--3+|2-15-3|
2--3+|2-15-3|
2--3+|2-15-3|
Step 6
Evaluate |2-15-3|.
Tap for more steps...
Step 6.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
2--3+(2-3-5-1)
Step 6.2
Simplify the determinant.
Tap for more steps...
Step 6.2.1
Simplify each term.
Tap for more steps...
Step 6.2.1.1
Multiply 2 by -3.
2--3+(-6-5-1)
Step 6.2.1.2
Multiply -5 by -1.
2--3+(-6+5)
2--3+(-6+5)
Step 6.2.2
Add -6 and 5.
2--3-
2--3-
2--3-
Step 7
Multiply -1 by -3.
2+3-
Step 8
Rewrite the answer.
[23-1]
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay