Linear Algebra Examples

Find the Angle Between the Vectors Using Dot Product
(1,-2)(1,2) , (-2,1)(2,1)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗b⃗|a⃗||b⃗|)θ=arccos(a⃗b⃗|a⃗||b⃗|)
Step 2
Find the dot product.
Tap for more steps...
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗b⃗=1-2-21a⃗b⃗=1221
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Multiply -22 by 11.
a⃗b⃗=-2-21a⃗b⃗=221
Step 2.2.1.2
Multiply -22 by 11.
a⃗b⃗=-2-2a⃗b⃗=22
a⃗b⃗=-2-2a⃗b⃗=22
Step 2.2.2
Subtract 22 from -22.
a⃗b⃗=-4a⃗b⃗=4
a⃗b⃗=-4a⃗b⃗=4
a⃗b⃗=-4a⃗b⃗=4
Step 3
Find the magnitude of a⃗a⃗.
Tap for more steps...
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=12+(-2)2|a⃗|=12+(2)2
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
One to any power is one.
|a⃗|=1+(-2)2|a⃗|=1+(2)2
Step 3.2.2
Raise -22 to the power of 22.
|a⃗|=1+4|a⃗|=1+4
Step 3.2.3
Add 11 and 44.
|a⃗|=5|a⃗|=5
|a⃗|=5|a⃗|=5
|a⃗|=5|a⃗|=5
Step 4
Find the magnitude of b⃗b⃗.
Tap for more steps...
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=(-2)2+12|b⃗|=(2)2+12
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Raise -22 to the power of 22.
|b⃗|=4+12|b⃗|=4+12
Step 4.2.2
One to any power is one.
|b⃗|=4+1|b⃗|=4+1
Step 4.2.3
Add 44 and 11.
|b⃗|=5|b⃗|=5
|b⃗|=5|b⃗|=5
|b⃗|=5|b⃗|=5
Step 5
Substitute the values into the formula.
θ=arccos(-455)θ=arccos(455)
Step 6
Simplify.
Tap for more steps...
Step 6.1
Simplify the denominator.
Tap for more steps...
Step 6.1.1
Raise 55 to the power of 11.
θ=arccos(-4515)θ=arccos(4515)
Step 6.1.2
Raise 55 to the power of 11.
θ=arccos(-45151)θ=arccos(45151)
Step 6.1.3
Use the power rule aman=am+naman=am+n to combine exponents.
θ=arccos(-451+1)θ=arccos(451+1)
Step 6.1.4
Add 11 and 11.
θ=arccos(-452)θ=arccos(452)
θ=arccos(-452)θ=arccos(452)
Step 6.2
Rewrite 5252 as 55.
Tap for more steps...
Step 6.2.1
Use nax=axnnax=axn to rewrite 55 as 512512.
θ=arccos(-4(512)2)θ=arccos⎜ ⎜4(512)2⎟ ⎟
Step 6.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
θ=arccos(-45122)θ=arccos(45122)
Step 6.2.3
Combine 1212 and 22.
θ=arccos(-4522)θ=arccos(4522)
Step 6.2.4
Cancel the common factor of 22.
Tap for more steps...
Step 6.2.4.1
Cancel the common factor.
θ=arccos(-4522)
Step 6.2.4.2
Rewrite the expression.
θ=arccos(-451)
θ=arccos(-451)
Step 6.2.5
Evaluate the exponent.
θ=arccos(-45)
θ=arccos(-45)
Step 6.3
Move the negative in front of the fraction.
θ=arccos(-45)
Step 6.4
Evaluate arccos(-45).
θ=143.13010235
θ=143.13010235
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay