Linear Algebra Examples
(1,-2)(1,−2) , (-2,1)(−2,1)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗⋅b⃗|a⃗||b⃗|)θ=arccos(a⃗⋅b⃗|a⃗||b⃗|)
Step 2
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗⋅b⃗=1⋅-2-2⋅1a⃗⋅b⃗=1⋅−2−2⋅1
Step 2.2
Simplify.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply -2−2 by 11.
a⃗⋅b⃗=-2-2⋅1a⃗⋅b⃗=−2−2⋅1
Step 2.2.1.2
Multiply -2−2 by 11.
a⃗⋅b⃗=-2-2a⃗⋅b⃗=−2−2
a⃗⋅b⃗=-2-2a⃗⋅b⃗=−2−2
Step 2.2.2
Subtract 22 from -2−2.
a⃗⋅b⃗=-4a⃗⋅b⃗=−4
a⃗⋅b⃗=-4a⃗⋅b⃗=−4
a⃗⋅b⃗=-4a⃗⋅b⃗=−4
Step 3
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=√12+(-2)2|a⃗|=√12+(−2)2
Step 3.2
Simplify.
Step 3.2.1
One to any power is one.
|a⃗|=√1+(-2)2|a⃗|=√1+(−2)2
Step 3.2.2
Raise -2−2 to the power of 22.
|a⃗|=√1+4|a⃗|=√1+4
Step 3.2.3
Add 11 and 44.
|a⃗|=√5|a⃗|=√5
|a⃗|=√5|a⃗|=√5
|a⃗|=√5|a⃗|=√5
Step 4
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=√(-2)2+12|b⃗|=√(−2)2+12
Step 4.2
Simplify.
Step 4.2.1
Raise -2−2 to the power of 22.
|b⃗|=√4+12|b⃗|=√4+12
Step 4.2.2
One to any power is one.
|b⃗|=√4+1|b⃗|=√4+1
Step 4.2.3
Add 44 and 11.
|b⃗|=√5|b⃗|=√5
|b⃗|=√5|b⃗|=√5
|b⃗|=√5|b⃗|=√5
Step 5
Substitute the values into the formula.
θ=arccos(-4√5√5)θ=arccos(−4√5√5)
Step 6
Step 6.1
Simplify the denominator.
Step 6.1.1
Raise √5√5 to the power of 11.
θ=arccos(-4√51√5)θ=arccos(−4√51√5)
Step 6.1.2
Raise √5√5 to the power of 11.
θ=arccos(-4√51√51)θ=arccos(−4√51√51)
Step 6.1.3
Use the power rule aman=am+naman=am+n to combine exponents.
θ=arccos(-4√51+1)θ=arccos(−4√51+1)
Step 6.1.4
Add 11 and 11.
θ=arccos(-4√52)θ=arccos(−4√52)
θ=arccos(-4√52)θ=arccos(−4√52)
Step 6.2
Rewrite √52√52 as 55.
Step 6.2.1
Use n√ax=axnn√ax=axn to rewrite √5√5 as 512512.
θ=arccos(-4(512)2)θ=arccos⎛⎜
⎜⎝−4(512)2⎞⎟
⎟⎠
Step 6.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
θ=arccos(-4512⋅2)θ=arccos(−4512⋅2)
Step 6.2.3
Combine 1212 and 22.
θ=arccos(-4522)θ=arccos(−4522)
Step 6.2.4
Cancel the common factor of 22.
Step 6.2.4.1
Cancel the common factor.
θ=arccos(-4522)
Step 6.2.4.2
Rewrite the expression.
θ=arccos(-451)
θ=arccos(-451)
Step 6.2.5
Evaluate the exponent.
θ=arccos(-45)
θ=arccos(-45)
Step 6.3
Move the negative in front of the fraction.
θ=arccos(-45)
Step 6.4
Evaluate arccos(-45).
θ=143.13010235
θ=143.13010235