Linear Algebra Examples
(1,-1,2)(1,−1,2) , (0,3,1)(0,3,1)
Step 1
Use the cross product formula to find the angle between two vectors.
θ=arcsin(|a⃗×b⃗||a⃗||b⃗|)θ=arcsin(|a⃗×b⃗||a⃗||b⃗|)
Step 2
Step 2.1
The cross product of two vectors a⃗a⃗ and b⃗b⃗ can be written as a determinant with the standard unit vectors from ℝ3 and the elements of the given vectors.
a⃗×b⃗=a⃗×b⃗=|îĵk̂a1a2a3b1b2b3|
Step 2.2
Set up the determinant with the given values.
a⃗×b⃗=|îĵk̂1-12031|
Step 2.3
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 2.3.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 2.3.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 2.3.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-1231|
Step 2.3.4
Multiply element a11 by its cofactor.
|-1231|î
Step 2.3.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1201|
Step 2.3.6
Multiply element a12 by its cofactor.
-|1201|ĵ
Step 2.3.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1-103|
Step 2.3.8
Multiply element a13 by its cofactor.
|1-103|k̂
Step 2.3.9
Add the terms together.
a⃗×b⃗=|-1231|î-|1201|ĵ+|1-103|k̂
a⃗×b⃗=|-1231|î-|1201|ĵ+|1-103|k̂
Step 2.4
Evaluate |-1231|.
Step 2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a⃗×b⃗=(-1⋅1-3⋅2)î-|1201|ĵ+|1-103|k̂
Step 2.4.2
Simplify the determinant.
Step 2.4.2.1
Simplify each term.
Step 2.4.2.1.1
Multiply -1 by 1.
a⃗×b⃗=(-1-3⋅2)î-|1201|ĵ+|1-103|k̂
Step 2.4.2.1.2
Multiply -3 by 2.
a⃗×b⃗=(-1-6)î-|1201|ĵ+|1-103|k̂
a⃗×b⃗=(-1-6)î-|1201|ĵ+|1-103|k̂
Step 2.4.2.2
Subtract 6 from -1.
a⃗×b⃗=-7î-|1201|ĵ+|1-103|k̂
a⃗×b⃗=-7î-|1201|ĵ+|1-103|k̂
a⃗×b⃗=-7î-|1201|ĵ+|1-103|k̂
Step 2.5
Evaluate |1201|.
Step 2.5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a⃗×b⃗=-7î-(1⋅1+0⋅2)ĵ+|1-103|k̂
Step 2.5.2
Simplify the determinant.
Step 2.5.2.1
Simplify each term.
Step 2.5.2.1.1
Multiply 1 by 1.
a⃗×b⃗=-7î-(1+0⋅2)ĵ+|1-103|k̂
Step 2.5.2.1.2
Multiply 0 by 2.
a⃗×b⃗=-7î-(1+0)ĵ+|1-103|k̂
a⃗×b⃗=-7î-(1+0)ĵ+|1-103|k̂
Step 2.5.2.2
Add 1 and 0.
a⃗×b⃗=-7î-1⋅1ĵ+|1-103|k̂
a⃗×b⃗=-7î-1⋅1ĵ+|1-103|k̂
a⃗×b⃗=-7î-1⋅1ĵ+|1-103|k̂
Step 2.6
Evaluate |1-103|.
Step 2.6.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a⃗×b⃗=-7î-1⋅1ĵ+(1⋅3+0⋅-1)k̂
Step 2.6.2
Simplify the determinant.
Step 2.6.2.1
Simplify each term.
Step 2.6.2.1.1
Multiply 3 by 1.
a⃗×b⃗=-7î-1⋅1ĵ+(3+0⋅-1)k̂
Step 2.6.2.1.2
Multiply 0 by -1.
a⃗×b⃗=-7î-1⋅1ĵ+(3+0)k̂
a⃗×b⃗=-7î-1⋅1ĵ+(3+0)k̂
Step 2.6.2.2
Add 3 and 0.
a⃗×b⃗=-7î-1⋅1ĵ+3k̂
a⃗×b⃗=-7î-1⋅1ĵ+3k̂
a⃗×b⃗=-7î-1⋅1ĵ+3k̂
Step 2.7
Multiply -1 by 1.
a⃗×b⃗=-7î-ĵ+3k̂
Step 2.8
Rewrite the answer.
a⃗×b⃗=(-7,-1,3)
a⃗×b⃗=(-7,-1,3)
Step 3
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗×b⃗|=√(-7)2+(-1)2+32
Step 3.2
Simplify.
Step 3.2.1
Raise -7 to the power of 2.
|a⃗×b⃗|=√49+(-1)2+32
Step 3.2.2
Raise -1 to the power of 2.
|a⃗×b⃗|=√49+1+32
Step 3.2.3
Raise 3 to the power of 2.
|a⃗×b⃗|=√49+1+9
Step 3.2.4
Add 49 and 1.
|a⃗×b⃗|=√50+9
Step 3.2.5
Add 50 and 9.
|a⃗×b⃗|=√59
|a⃗×b⃗|=√59
|a⃗×b⃗|=√59
Step 4
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=√12+(-1)2+22
Step 4.2
Simplify.
Step 4.2.1
One to any power is one.
|a⃗|=√1+(-1)2+22
Step 4.2.2
Raise -1 to the power of 2.
|a⃗|=√1+1+22
Step 4.2.3
Raise 2 to the power of 2.
|a⃗|=√1+1+4
Step 4.2.4
Add 1 and 1.
|a⃗|=√2+4
Step 4.2.5
Add 2 and 4.
|a⃗|=√6
|a⃗|=√6
|a⃗|=√6
Step 5
Step 5.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=√02+32+12
Step 5.2
Simplify.
Step 5.2.1
Raising 0 to any positive power yields 0.
|b⃗|=√0+32+12
Step 5.2.2
Raise 3 to the power of 2.
|b⃗|=√0+9+12
Step 5.2.3
One to any power is one.
|b⃗|=√0+9+1
Step 5.2.4
Add 0 and 9.
|b⃗|=√9+1
Step 5.2.5
Add 9 and 1.
|b⃗|=√10
|b⃗|=√10
|b⃗|=√10
Step 6
Substitute the values into the formula.
θ=arcsin(√59√6√10)
Step 7
Step 7.1
Simplify the denominator.
Step 7.1.1
Combine using the product rule for radicals.
θ=arcsin(√59√6⋅10)
Step 7.1.2
Multiply 6 by 10.
θ=arcsin(√59√60)
θ=arcsin(√59√60)
Step 7.2
Simplify the denominator.
Step 7.2.1
Rewrite 60 as 22⋅15.
Step 7.2.1.1
Factor 4 out of 60.
θ=arcsin(√59√4(15))
Step 7.2.1.2
Rewrite 4 as 22.
θ=arcsin(√59√22⋅15)
θ=arcsin(√59√22⋅15)
Step 7.2.2
Pull terms out from under the radical.
θ=arcsin(√592√15)
θ=arcsin(√592√15)
Step 7.3
Multiply √592√15 by √15√15.
θ=arcsin(√592√15⋅√15√15)
Step 7.4
Combine and simplify the denominator.
Step 7.4.1
Multiply √592√15 by √15√15.
θ=arcsin(√59√152√15√15)
Step 7.4.2
Move √15.
θ=arcsin(√59√152(√15√15))
Step 7.4.3
Raise √15 to the power of 1.
θ=arcsin(√59√152(√151√15))
Step 7.4.4
Raise √15 to the power of 1.
θ=arcsin(√59√152(√151√151))
Step 7.4.5
Use the power rule aman=am+n to combine exponents.
θ=arcsin(√59√152√151+1)
Step 7.4.6
Add 1 and 1.
θ=arcsin(√59√152√152)
Step 7.4.7
Rewrite √152 as 15.
Step 7.4.7.1
Use n√ax=axn to rewrite √15 as 1512.
θ=arcsin(√59√152(1512)2)
Step 7.4.7.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arcsin(√59√152⋅1512⋅2)
Step 7.4.7.3
Combine 12 and 2.
θ=arcsin(√59√152⋅1522)
Step 7.4.7.4
Cancel the common factor of 2.
Step 7.4.7.4.1
Cancel the common factor.
θ=arcsin(√59√152⋅1522)
Step 7.4.7.4.2
Rewrite the expression.
θ=arcsin(√59√152⋅151)
θ=arcsin(√59√152⋅151)
Step 7.4.7.5
Evaluate the exponent.
θ=arcsin(√59√152⋅15)
θ=arcsin(√59√152⋅15)
θ=arcsin(√59√152⋅15)
Step 7.5
Simplify the numerator.
Step 7.5.1
Combine using the product rule for radicals.
θ=arcsin(√59⋅152⋅15)
Step 7.5.2
Multiply 59 by 15.
θ=arcsin(√8852⋅15)
θ=arcsin(√8852⋅15)
Step 7.6
Multiply 2 by 15.
θ=arcsin(√88530)
Step 7.7
Evaluate arcsin(√88530).
θ=82.5824442
θ=82.5824442