Linear Algebra Examples

Find the Angle Between the Vectors Using Cross Product
(2,0,1)(2,0,1) , (-2,1,1)(2,1,1)
Step 1
Use the cross product formula to find the angle between two vectors.
θ=arcsin(|a⃗×b⃗||a⃗||b⃗|)θ=arcsin(|a⃗×b⃗||a⃗||b⃗|)
Step 2
Find the cross product.
Tap for more steps...
Step 2.1
The cross product of two vectors a⃗a⃗ and b⃗b⃗ can be written as a determinant with the standard unit vectors from 3 and the elements of the given vectors.
a⃗×b⃗=a⃗×b⃗=|a1a2a3b1b2b3|
Step 2.2
Set up the determinant with the given values.
a⃗×b⃗=|201-211|
Step 2.3
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 2.3.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 2.3.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 2.3.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|0111|
Step 2.3.4
Multiply element a11 by its cofactor.
|0111|
Step 2.3.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|21-21|
Step 2.3.6
Multiply element a12 by its cofactor.
-|21-21|
Step 2.3.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|20-21|
Step 2.3.8
Multiply element a13 by its cofactor.
|20-21|
Step 2.3.9
Add the terms together.
a⃗×b⃗=|0111|-|21-21|+|20-21|
a⃗×b⃗=|0111|-|21-21|+|20-21|
Step 2.4
Evaluate |0111|.
Tap for more steps...
Step 2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a⃗×b⃗=(01-11)-|21-21|+|20-21|
Step 2.4.2
Simplify the determinant.
Tap for more steps...
Step 2.4.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.1.1
Multiply 0 by 1.
a⃗×b⃗=(0-11)-|21-21|+|20-21|
Step 2.4.2.1.2
Multiply -1 by 1.
a⃗×b⃗=(0-1)-|21-21|+|20-21|
a⃗×b⃗=(0-1)-|21-21|+|20-21|
Step 2.4.2.2
Subtract 1 from 0.
a⃗×b⃗=--|21-21|+|20-21|
a⃗×b⃗=--|21-21|+|20-21|
a⃗×b⃗=--|21-21|+|20-21|
Step 2.5
Evaluate |21-21|.
Tap for more steps...
Step 2.5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a⃗×b⃗=--(21-(-21))+|20-21|
Step 2.5.2
Simplify the determinant.
Tap for more steps...
Step 2.5.2.1
Simplify each term.
Tap for more steps...
Step 2.5.2.1.1
Multiply 2 by 1.
a⃗×b⃗=--(2-(-21))+|20-21|
Step 2.5.2.1.2
Multiply -(-21).
Tap for more steps...
Step 2.5.2.1.2.1
Multiply -2 by 1.
a⃗×b⃗=--(2--2)+|20-21|
Step 2.5.2.1.2.2
Multiply -1 by -2.
a⃗×b⃗=--(2+2)+|20-21|
a⃗×b⃗=--(2+2)+|20-21|
a⃗×b⃗=--(2+2)+|20-21|
Step 2.5.2.2
Add 2 and 2.
a⃗×b⃗=--14+|20-21|
a⃗×b⃗=--14+|20-21|
a⃗×b⃗=--14+|20-21|
Step 2.6
Evaluate |20-21|.
Tap for more steps...
Step 2.6.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a⃗×b⃗=--14+(21-(-20))
Step 2.6.2
Simplify the determinant.
Tap for more steps...
Step 2.6.2.1
Simplify each term.
Tap for more steps...
Step 2.6.2.1.1
Multiply 2 by 1.
a⃗×b⃗=--14+(2-(-20))
Step 2.6.2.1.2
Multiply -(-20).
Tap for more steps...
Step 2.6.2.1.2.1
Multiply -2 by 0.
a⃗×b⃗=--14+(2-0)
Step 2.6.2.1.2.2
Multiply -1 by 0.
a⃗×b⃗=--14+(2+0)
a⃗×b⃗=--14+(2+0)
a⃗×b⃗=--14+(2+0)
Step 2.6.2.2
Add 2 and 0.
a⃗×b⃗=--14+2
a⃗×b⃗=--14+2
a⃗×b⃗=--14+2
Step 2.7
Multiply -1 by 4.
a⃗×b⃗=--4+2
Step 2.8
Rewrite the answer.
a⃗×b⃗=(-1,-4,2)
a⃗×b⃗=(-1,-4,2)
Step 3
Find the magnitude of the cross product.
Tap for more steps...
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗×b⃗|=(-1)2+(-4)2+22
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Raise -1 to the power of 2.
|a⃗×b⃗|=1+(-4)2+22
Step 3.2.2
Raise -4 to the power of 2.
|a⃗×b⃗|=1+16+22
Step 3.2.3
Raise 2 to the power of 2.
|a⃗×b⃗|=1+16+4
Step 3.2.4
Add 1 and 16.
|a⃗×b⃗|=17+4
Step 3.2.5
Add 17 and 4.
|a⃗×b⃗|=21
|a⃗×b⃗|=21
|a⃗×b⃗|=21
Step 4
Find the magnitude of a⃗.
Tap for more steps...
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=22+02+12
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Raise 2 to the power of 2.
|a⃗|=4+02+12
Step 4.2.2
Raising 0 to any positive power yields 0.
|a⃗|=4+0+12
Step 4.2.3
One to any power is one.
|a⃗|=4+0+1
Step 4.2.4
Add 4 and 0.
|a⃗|=4+1
Step 4.2.5
Add 4 and 1.
|a⃗|=5
|a⃗|=5
|a⃗|=5
Step 5
Find the magnitude of b⃗.
Tap for more steps...
Step 5.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=(-2)2+12+12
Step 5.2
Simplify.
Tap for more steps...
Step 5.2.1
Raise -2 to the power of 2.
|b⃗|=4+12+12
Step 5.2.2
One to any power is one.
|b⃗|=4+1+12
Step 5.2.3
One to any power is one.
|b⃗|=4+1+1
Step 5.2.4
Add 4 and 1.
|b⃗|=5+1
Step 5.2.5
Add 5 and 1.
|b⃗|=6
|b⃗|=6
|b⃗|=6
Step 6
Substitute the values into the formula.
θ=arcsin(2156)
Step 7
Simplify.
Tap for more steps...
Step 7.1
Combine 21 and 6 into a single radical.
θ=arcsin(2165)
Step 7.2
Cancel the common factor of 21 and 6.
Tap for more steps...
Step 7.2.1
Factor 3 out of 21.
θ=arcsin(3(7)65)
Step 7.2.2
Cancel the common factors.
Tap for more steps...
Step 7.2.2.1
Factor 3 out of 6.
θ=arcsin(37325)
Step 7.2.2.2
Cancel the common factor.
θ=arcsin(37325)
Step 7.2.2.3
Rewrite the expression.
θ=arcsin(725)
θ=arcsin(725)
θ=arcsin(725)
Step 7.3
Simplify the numerator.
Tap for more steps...
Step 7.3.1
Rewrite 72 as 72.
θ=arcsin(725)
Step 7.3.2
Multiply 72 by 22.
θ=arcsin(72225)
Step 7.3.3
Combine and simplify the denominator.
Tap for more steps...
Step 7.3.3.1
Multiply 72 by 22.
θ=arcsin(72225)
Step 7.3.3.2
Raise 2 to the power of 1.
θ=arcsin(722125)
Step 7.3.3.3
Raise 2 to the power of 1.
θ=arcsin(7221215)
Step 7.3.3.4
Use the power rule aman=am+n to combine exponents.
θ=arcsin(7221+15)
Step 7.3.3.5
Add 1 and 1.
θ=arcsin(72225)
Step 7.3.3.6
Rewrite 22 as 2.
Tap for more steps...
Step 7.3.3.6.1
Use nax=axn to rewrite 2 as 212.
θ=arcsin(72(212)25)
Step 7.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arcsin(7221225)
Step 7.3.3.6.3
Combine 12 and 2.
θ=arcsin(722225)
Step 7.3.3.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 7.3.3.6.4.1
Cancel the common factor.
θ=arcsin(722225)
Step 7.3.3.6.4.2
Rewrite the expression.
θ=arcsin(72215)
θ=arcsin(72215)
Step 7.3.3.6.5
Evaluate the exponent.
θ=arcsin(7225)
θ=arcsin(7225)
θ=arcsin(7225)
Step 7.3.4
Simplify the numerator.
Tap for more steps...
Step 7.3.4.1
Combine using the product rule for radicals.
θ=arcsin(7225)
Step 7.3.4.2
Multiply 7 by 2.
θ=arcsin(1425)
θ=arcsin(1425)
θ=arcsin(1425)
Step 7.4
Multiply the numerator by the reciprocal of the denominator.
θ=arcsin(14215)
Step 7.5
Multiply 15 by 55.
θ=arcsin(142(1555))
Step 7.6
Combine and simplify the denominator.
Tap for more steps...
Step 7.6.1
Multiply 15 by 55.
θ=arcsin(142555)
Step 7.6.2
Raise 5 to the power of 1.
θ=arcsin(1425515)
Step 7.6.3
Raise 5 to the power of 1.
θ=arcsin(14255151)
Step 7.6.4
Use the power rule aman=am+n to combine exponents.
θ=arcsin(142551+1)
Step 7.6.5
Add 1 and 1.
θ=arcsin(142552)
Step 7.6.6
Rewrite 52 as 5.
Tap for more steps...
Step 7.6.6.1
Use nax=axn to rewrite 5 as 512.
θ=arcsin(1425(512)2)
Step 7.6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arcsin(14255122)
Step 7.6.6.3
Combine 12 and 2.
θ=arcsin(1425522)
Step 7.6.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 7.6.6.4.1
Cancel the common factor.
θ=arcsin(1425522)
Step 7.6.6.4.2
Rewrite the expression.
θ=arcsin(142551)
θ=arcsin(142551)
Step 7.6.6.5
Evaluate the exponent.
θ=arcsin(14255)
θ=arcsin(14255)
θ=arcsin(14255)
Step 7.7
Multiply 14255.
Tap for more steps...
Step 7.7.1
Multiply 142 by 55.
θ=arcsin(14525)
Step 7.7.2
Combine using the product rule for radicals.
θ=arcsin(14525)
Step 7.7.3
Multiply 14 by 5.
θ=arcsin(7025)
Step 7.7.4
Multiply 2 by 5.
θ=arcsin(7010)
θ=arcsin(7010)
Step 7.8
Evaluate arcsin(7010).
θ=56.78908923
θ=56.78908923
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay