Linear Algebra Examples
[10-1]⎡⎢⎣10−1⎤⎥⎦ , [1√21]⎡⎢⎣1√21⎤⎥⎦ , [1-√21]⎡⎢⎣1−√21⎤⎥⎦
Step 1
Two vectors are orthogonal if the dot product of them is 00.
Step 2
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
1⋅1+0√2-1⋅11⋅1+0√2−1⋅1
Step 2.2
Simplify.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 11 by 11.
1+0√2-1⋅11+0√2−1⋅1
Step 2.2.1.2
Multiply 00 by √2√2.
1+0-1⋅11+0−1⋅1
Step 2.2.1.3
Multiply -1−1 by 11.
1+0-11+0−1
1+0-11+0−1
Step 2.2.2
Add 11 and 00.
1-11−1
Step 2.2.3
Subtract 11 from 11.
00
00
00
Step 3
Step 3.1
The dot product of two vectors is the sum of the products of the their components.
1⋅1+0(-√2)-1⋅11⋅1+0(−√2)−1⋅1
Step 3.2
Simplify.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Multiply 11 by 11.
1+0(-√2)-1⋅11+0(−√2)−1⋅1
Step 3.2.1.2
Multiply 0(-√2)0(−√2).
Step 3.2.1.2.1
Multiply -1−1 by 00.
1+0√2-1⋅11+0√2−1⋅1
Step 3.2.1.2.2
Multiply 00 by √2√2.
1+0-1⋅11+0−1⋅1
1+0-1⋅11+0−1⋅1
Step 3.2.1.3
Multiply -1−1 by 11.
1+0-11+0−1
1+0-11+0−1
Step 3.2.2
Add 11 and 00.
1-11−1
Step 3.2.3
Subtract 11 from 11.
00
00
00
Step 4
Step 4.1
The dot product of two vectors is the sum of the products of the their components.
1⋅1+√2(-√2)+1⋅11⋅1+√2(−√2)+1⋅1
Step 4.2
Simplify.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply 11 by 11.
1+√2(-√2)+1⋅11+√2(−√2)+1⋅1
Step 4.2.1.2
Multiply √2(-√2)√2(−√2).
Step 4.2.1.2.1
Raise √2√2 to the power of 11.
1-(√21√2)+1⋅11−(√21√2)+1⋅1
Step 4.2.1.2.2
Raise √2√2 to the power of 11.
1-(√21√21)+1⋅11−(√21√21)+1⋅1
Step 4.2.1.2.3
Use the power rule aman=am+naman=am+n to combine exponents.
1-√21+1+1⋅11−√21+1+1⋅1
Step 4.2.1.2.4
Add 11 and 11.
1-√22+1⋅11−√22+1⋅1
1-√22+1⋅11−√22+1⋅1
Step 4.2.1.3
Rewrite √22√22 as 22.
Step 4.2.1.3.1
Use n√ax=axnn√ax=axn to rewrite √2√2 as 212212.
1-(212)2+1⋅11−(212)2+1⋅1
Step 4.2.1.3.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
1-212⋅2+1⋅11−212⋅2+1⋅1
Step 4.2.1.3.3
Combine 1212 and 22.
1-222+1⋅11−222+1⋅1
Step 4.2.1.3.4
Cancel the common factor of 22.
Step 4.2.1.3.4.1
Cancel the common factor.
1-222+1⋅1
Step 4.2.1.3.4.2
Rewrite the expression.
1-21+1⋅1
1-21+1⋅1
Step 4.2.1.3.5
Evaluate the exponent.
1-1⋅2+1⋅1
1-1⋅2+1⋅1
Step 4.2.1.4
Multiply -1 by 2.
1-2+1⋅1
Step 4.2.1.5
Multiply 1 by 1.
1-2+1
1-2+1
Step 4.2.2
Subtract 2 from 1.
-1+1
Step 4.2.3
Add -1 and 1.
0
0
0
Step 5
The vectors are orthogonal since the dot products are all 0.
Orthogonal