Linear Algebra Examples

Determine if the Vectors are Orthogonal
[10-1]101 , [121]121 , [1-21]121
Step 1
Two vectors are orthogonal if the dot product of them is 00.
Step 2
Evaluate the dot product of [10-1]101 and [121]121.
Tap for more steps...
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
11+02-1111+0211
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Multiply 11 by 11.
1+02-111+0211
Step 2.2.1.2
Multiply 00 by 22.
1+0-111+011
Step 2.2.1.3
Multiply -11 by 11.
1+0-11+01
1+0-11+01
Step 2.2.2
Add 11 and 00.
1-111
Step 2.2.3
Subtract 11 from 11.
00
00
00
Step 3
Evaluate the dot product of [10-1]101 and [1-21]121.
Tap for more steps...
Step 3.1
The dot product of two vectors is the sum of the products of the their components.
11+0(-2)-1111+0(2)11
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Multiply 11 by 11.
1+0(-2)-111+0(2)11
Step 3.2.1.2
Multiply 0(-2)0(2).
Tap for more steps...
Step 3.2.1.2.1
Multiply -11 by 00.
1+02-111+0211
Step 3.2.1.2.2
Multiply 00 by 22.
1+0-111+011
1+0-111+011
Step 3.2.1.3
Multiply -11 by 11.
1+0-11+01
1+0-11+01
Step 3.2.2
Add 11 and 00.
1-111
Step 3.2.3
Subtract 11 from 11.
00
00
00
Step 4
Evaluate the dot product of [121]121 and [1-21]121.
Tap for more steps...
Step 4.1
The dot product of two vectors is the sum of the products of the their components.
11+2(-2)+1111+2(2)+11
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Multiply 11 by 11.
1+2(-2)+111+2(2)+11
Step 4.2.1.2
Multiply 2(-2)2(2).
Tap for more steps...
Step 4.2.1.2.1
Raise 22 to the power of 11.
1-(212)+111(212)+11
Step 4.2.1.2.2
Raise 22 to the power of 11.
1-(2121)+111(2121)+11
Step 4.2.1.2.3
Use the power rule aman=am+naman=am+n to combine exponents.
1-21+1+11121+1+11
Step 4.2.1.2.4
Add 11 and 11.
1-22+11122+11
1-22+11122+11
Step 4.2.1.3
Rewrite 2222 as 22.
Tap for more steps...
Step 4.2.1.3.1
Use nax=axnnax=axn to rewrite 22 as 212212.
1-(212)2+111(212)2+11
Step 4.2.1.3.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
1-2122+1112122+11
Step 4.2.1.3.3
Combine 1212 and 22.
1-222+111222+11
Step 4.2.1.3.4
Cancel the common factor of 22.
Tap for more steps...
Step 4.2.1.3.4.1
Cancel the common factor.
1-222+11
Step 4.2.1.3.4.2
Rewrite the expression.
1-21+11
1-21+11
Step 4.2.1.3.5
Evaluate the exponent.
1-12+11
1-12+11
Step 4.2.1.4
Multiply -1 by 2.
1-2+11
Step 4.2.1.5
Multiply 1 by 1.
1-2+1
1-2+1
Step 4.2.2
Subtract 2 from 1.
-1+1
Step 4.2.3
Add -1 and 1.
0
0
0
Step 5
The vectors are orthogonal since the dot products are all 0.
Orthogonal
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay