Linear Algebra Examples
S={[2-1342],[62-134]}S=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩⎡⎢
⎢
⎢
⎢
⎢
⎢⎣2−1342⎤⎥
⎥
⎥
⎥
⎥
⎥⎦,⎡⎢
⎢
⎢
⎢
⎢
⎢⎣62−134⎤⎥
⎥
⎥
⎥
⎥
⎥⎦⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭
Step 1
Write as an augmented matrix for Ax=0Ax=0.
[260-1203-10430240]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣260−1203−10430240⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 2
Step 2.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
Step 2.1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
[226202-1203-10430240]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣226202−1203−10430240⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 2.1.2
Simplify R1R1.
[130-1203-10430240]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣130−1203−10430240⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
[130-1203-10430240]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣130−1203−10430240⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 2.2
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
Step 2.2.1
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
[130-1+1⋅12+1⋅30+03-10430240]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣130−1+1⋅12+1⋅30+03−10430240⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 2.2.2
Simplify R2R2.
[1300503-10430240]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣1300503−10430240⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
[1300503-10430240]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣1300503−10430240⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 2.3
Perform the row operation R3=R3-3R1R3=R3−3R1 to make the entry at 3,13,1 a 00.
Step 2.3.1
Perform the row operation R3=R3-3R1R3=R3−3R1 to make the entry at 3,13,1 a 00.
[1300503-3⋅1-1-3⋅30-3⋅0430240]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣1300503−3⋅1−1−3⋅30−3⋅0430240⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 2.3.2
Simplify R3.
[1300500-100430240]
[1300500-100430240]
Step 2.4
Perform the row operation R4=R4-4R1 to make the entry at 4,1 a 0.
Step 2.4.1
Perform the row operation R4=R4-4R1 to make the entry at 4,1 a 0.
[1300500-1004-4⋅13-4⋅30-4⋅0240]
Step 2.4.2
Simplify R4.
[1300500-1000-90240]
[1300500-1000-90240]
Step 2.5
Perform the row operation R5=R5-2R1 to make the entry at 5,1 a 0.
Step 2.5.1
Perform the row operation R5=R5-2R1 to make the entry at 5,1 a 0.
[1300500-1000-902-2⋅14-2⋅30-2⋅0]
Step 2.5.2
Simplify R5.
[1300500-1000-900-20]
[1300500-1000-900-20]
Step 2.6
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
Step 2.6.1
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
[1300555050-1000-900-20]
Step 2.6.2
Simplify R2.
[1300100-1000-900-20]
[1300100-1000-900-20]
Step 2.7
Perform the row operation R3=R3+10R2 to make the entry at 3,2 a 0.
Step 2.7.1
Perform the row operation R3=R3+10R2 to make the entry at 3,2 a 0.
[1300100+10⋅0-10+10⋅10+10⋅00-900-20]
Step 2.7.2
Simplify R3.
[1300100000-900-20]
[1300100000-900-20]
Step 2.8
Perform the row operation R4=R4+9R2 to make the entry at 4,2 a 0.
Step 2.8.1
Perform the row operation R4=R4+9R2 to make the entry at 4,2 a 0.
[1300100000+9⋅0-9+9⋅10+9⋅00-20]
Step 2.8.2
Simplify R4.
[1300100000000-20]
[1300100000000-20]
Step 2.9
Perform the row operation R5=R5+2R2 to make the entry at 5,2 a 0.
Step 2.9.1
Perform the row operation R5=R5+2R2 to make the entry at 5,2 a 0.
[1300100000000+2⋅0-2+2⋅10+2⋅0]
Step 2.9.2
Simplify R5.
[130010000000000]
[130010000000000]
Step 2.10
Perform the row operation R1=R1-3R2 to make the entry at 1,2 a 0.
Step 2.10.1
Perform the row operation R1=R1-3R2 to make the entry at 1,2 a 0.
[1-3⋅03-3⋅10-3⋅0010000000000]
Step 2.10.2
Simplify R1.
[100010000000000]
[100010000000000]
[100010000000000]
Step 3
Use the result matrix to declare the final solution to the system of equations.
x=0
y=0
0=0
0=0
0=0
Step 4
Write a solution vector by solving in terms of the free variables in each row.
[xy]=[00]
Step 5
Write as a solution set.
{[00]}