Linear Algebra Examples
y=3x+z-2y=3x+z−2 , z=3x+4z=3x+4 , y=5zy=5z
Step 1
Step 1.1
Move all terms containing variables to the left side of the equation.
Step 1.1.1
Subtract 3x3x from both sides of the equation.
y-3x=z-2y−3x=z−2
z=3x+4z=3x+4
y=5zy=5z
Step 1.1.2
Subtract zz from both sides of the equation.
y-3x-z=-2y−3x−z=−2
z=3x+4z=3x+4
y=5zy=5z
y-3x-z=-2y−3x−z=−2
z=3x+4z=3x+4
y=5zy=5z
Step 1.2
Reorder yy and -3x−3x.
-3x+y-z=-2−3x+y−z=−2
z=3x+4z=3x+4
y=5zy=5z
Step 1.3
Subtract 3x3x from both sides of the equation.
-3x+y-z=-2−3x+y−z=−2
z-3x=4z−3x=4
y=5zy=5z
Step 1.4
Reorder zz and -3x−3x.
-3x+y-z=-2−3x+y−z=−2
-3x+z=4−3x+z=4
y=5zy=5z
Step 1.5
Subtract 5z5z from both sides of the equation.
-3x+y-z=-2−3x+y−z=−2
-3x+z=4−3x+z=4
y-5z=0y−5z=0
-3x+y-z=-2−3x+y−z=−2
-3x+z=4−3x+z=4
y-5z=0y−5z=0
Step 2
Represent the system of equations in matrix format.
[-31-1-30101-5][xyz]=[-240]⎡⎢⎣−31−1−30101−5⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣−240⎤⎥⎦
Step 3
Step 3.1
Write [-31-1-30101-5]⎡⎢⎣−31−1−30101−5⎤⎥⎦ in determinant notation.
|-31-1-30101-5|∣∣
∣∣−31−1−30101−5∣∣
∣∣
Step 3.2
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 11 by its cofactor and add.
Step 3.2.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Step 3.2.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Step 3.2.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|011-5|∣∣∣011−5∣∣∣
Step 3.2.4
Multiply element a11a11 by its cofactor.
-3|011-5|−3∣∣∣011−5∣∣∣
Step 3.2.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|1-11-5|∣∣∣1−11−5∣∣∣
Step 3.2.6
Multiply element a21 by its cofactor.
3|1-11-5|
Step 3.2.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1-101|
Step 3.2.8
Multiply element a31 by its cofactor.
0|1-101|
Step 3.2.9
Add the terms together.
-3|011-5|+3|1-11-5|+0|1-101|
-3|011-5|+3|1-11-5|+0|1-101|
Step 3.3
Multiply 0 by |1-101|.
-3|011-5|+3|1-11-5|+0
Step 3.4
Evaluate |011-5|.
Step 3.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-3(0⋅-5-1⋅1)+3|1-11-5|+0
Step 3.4.2
Simplify the determinant.
Step 3.4.2.1
Simplify each term.
Step 3.4.2.1.1
Multiply 0 by -5.
-3(0-1⋅1)+3|1-11-5|+0
Step 3.4.2.1.2
Multiply -1 by 1.
-3(0-1)+3|1-11-5|+0
-3(0-1)+3|1-11-5|+0
Step 3.4.2.2
Subtract 1 from 0.
-3⋅-1+3|1-11-5|+0
-3⋅-1+3|1-11-5|+0
-3⋅-1+3|1-11-5|+0
Step 3.5
Evaluate |1-11-5|.
Step 3.5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-3⋅-1+3(1⋅-5-1⋅-1)+0
Step 3.5.2
Simplify the determinant.
Step 3.5.2.1
Simplify each term.
Step 3.5.2.1.1
Multiply -5 by 1.
-3⋅-1+3(-5-1⋅-1)+0
Step 3.5.2.1.2
Multiply -1 by -1.
-3⋅-1+3(-5+1)+0
-3⋅-1+3(-5+1)+0
Step 3.5.2.2
Add -5 and 1.
-3⋅-1+3⋅-4+0
-3⋅-1+3⋅-4+0
-3⋅-1+3⋅-4+0
Step 3.6
Simplify the determinant.
Step 3.6.1
Simplify each term.
Step 3.6.1.1
Multiply -3 by -1.
3+3⋅-4+0
Step 3.6.1.2
Multiply 3 by -4.
3-12+0
3-12+0
Step 3.6.2
Subtract 12 from 3.
-9+0
Step 3.6.3
Add -9 and 0.
-9
-9
D=-9
Step 4
Since the determinant is not 0, the system can be solved using Cramer's Rule.
Step 5
Step 5.1
Replace column 1 of the coefficient matrix that corresponds to the x-coefficients of the system with [-240].
|-21-140101-5|
Step 5.2
Find the determinant.
Step 5.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 1 by its cofactor and add.
Step 5.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.2.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|011-5|
Step 5.2.1.4
Multiply element a11 by its cofactor.
-2|011-5|
Step 5.2.1.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|1-11-5|
Step 5.2.1.6
Multiply element a21 by its cofactor.
-4|1-11-5|
Step 5.2.1.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1-101|
Step 5.2.1.8
Multiply element a31 by its cofactor.
0|1-101|
Step 5.2.1.9
Add the terms together.
-2|011-5|-4|1-11-5|+0|1-101|
-2|011-5|-4|1-11-5|+0|1-101|
Step 5.2.2
Multiply 0 by |1-101|.
-2|011-5|-4|1-11-5|+0
Step 5.2.3
Evaluate |011-5|.
Step 5.2.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-2(0⋅-5-1⋅1)-4|1-11-5|+0
Step 5.2.3.2
Simplify the determinant.
Step 5.2.3.2.1
Simplify each term.
Step 5.2.3.2.1.1
Multiply 0 by -5.
-2(0-1⋅1)-4|1-11-5|+0
Step 5.2.3.2.1.2
Multiply -1 by 1.
-2(0-1)-4|1-11-5|+0
-2(0-1)-4|1-11-5|+0
Step 5.2.3.2.2
Subtract 1 from 0.
-2⋅-1-4|1-11-5|+0
-2⋅-1-4|1-11-5|+0
-2⋅-1-4|1-11-5|+0
Step 5.2.4
Evaluate |1-11-5|.
Step 5.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-2⋅-1-4(1⋅-5-1⋅-1)+0
Step 5.2.4.2
Simplify the determinant.
Step 5.2.4.2.1
Simplify each term.
Step 5.2.4.2.1.1
Multiply -5 by 1.
-2⋅-1-4(-5-1⋅-1)+0
Step 5.2.4.2.1.2
Multiply -1 by -1.
-2⋅-1-4(-5+1)+0
-2⋅-1-4(-5+1)+0
Step 5.2.4.2.2
Add -5 and 1.
-2⋅-1-4⋅-4+0
-2⋅-1-4⋅-4+0
-2⋅-1-4⋅-4+0
Step 5.2.5
Simplify the determinant.
Step 5.2.5.1
Simplify each term.
Step 5.2.5.1.1
Multiply -2 by -1.
2-4⋅-4+0
Step 5.2.5.1.2
Multiply -4 by -4.
2+16+0
2+16+0
Step 5.2.5.2
Add 2 and 16.
18+0
Step 5.2.5.3
Add 18 and 0.
18
18
Dx=18
Step 5.3
Use the formula to solve for x.
x=DxD
Step 5.4
Substitute -9 for D and 18 for Dx in the formula.
x=18-9
Step 5.5
Divide 18 by -9.
x=-2
x=-2
Step 6
Step 6.1
Replace column 2 of the coefficient matrix that corresponds to the y-coefficients of the system with [-240].
|-3-2-1-34100-5|
Step 6.2
Find the determinant.
Step 6.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
Step 6.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 6.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 6.2.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|-2-141|
Step 6.2.1.4
Multiply element a31 by its cofactor.
0|-2-141|
Step 6.2.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-3-1-31|
Step 6.2.1.6
Multiply element a32 by its cofactor.
0|-3-1-31|
Step 6.2.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|-3-2-34|
Step 6.2.1.8
Multiply element a33 by its cofactor.
-5|-3-2-34|
Step 6.2.1.9
Add the terms together.
0|-2-141|+0|-3-1-31|-5|-3-2-34|
0|-2-141|+0|-3-1-31|-5|-3-2-34|
Step 6.2.2
Multiply 0 by |-2-141|.
0+0|-3-1-31|-5|-3-2-34|
Step 6.2.3
Multiply 0 by |-3-1-31|.
0+0-5|-3-2-34|
Step 6.2.4
Evaluate |-3-2-34|.
Step 6.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0+0-5(-3⋅4-(-3⋅-2))
Step 6.2.4.2
Simplify the determinant.
Step 6.2.4.2.1
Simplify each term.
Step 6.2.4.2.1.1
Multiply -3 by 4.
0+0-5(-12-(-3⋅-2))
Step 6.2.4.2.1.2
Multiply -(-3⋅-2).
Step 6.2.4.2.1.2.1
Multiply -3 by -2.
0+0-5(-12-1⋅6)
Step 6.2.4.2.1.2.2
Multiply -1 by 6.
0+0-5(-12-6)
0+0-5(-12-6)
0+0-5(-12-6)
Step 6.2.4.2.2
Subtract 6 from -12.
0+0-5⋅-18
0+0-5⋅-18
0+0-5⋅-18
Step 6.2.5
Simplify the determinant.
Step 6.2.5.1
Multiply -5 by -18.
0+0+90
Step 6.2.5.2
Add 0 and 0.
0+90
Step 6.2.5.3
Add 0 and 90.
90
90
Dy=90
Step 6.3
Use the formula to solve for y.
y=DyD
Step 6.4
Substitute -9 for D and 90 for Dy in the formula.
y=90-9
Step 6.5
Divide 90 by -9.
y=-10
y=-10
Step 7
Step 7.1
Replace column 3 of the coefficient matrix that corresponds to the z-coefficients of the system with [-240].
|-31-2-304010|
Step 7.2
Find the determinant.
Step 7.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
Step 7.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 7.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 7.2.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1-204|
Step 7.2.1.4
Multiply element a31 by its cofactor.
0|1-204|
Step 7.2.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-3-2-34|
Step 7.2.1.6
Multiply element a32 by its cofactor.
-1|-3-2-34|
Step 7.2.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|-31-30|
Step 7.2.1.8
Multiply element a33 by its cofactor.
0|-31-30|
Step 7.2.1.9
Add the terms together.
0|1-204|-1|-3-2-34|+0|-31-30|
0|1-204|-1|-3-2-34|+0|-31-30|
Step 7.2.2
Multiply 0 by |1-204|.
0-1|-3-2-34|+0|-31-30|
Step 7.2.3
Multiply 0 by |-31-30|.
0-1|-3-2-34|+0
Step 7.2.4
Evaluate |-3-2-34|.
Step 7.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-1(-3⋅4-(-3⋅-2))+0
Step 7.2.4.2
Simplify the determinant.
Step 7.2.4.2.1
Simplify each term.
Step 7.2.4.2.1.1
Multiply -3 by 4.
0-1(-12-(-3⋅-2))+0
Step 7.2.4.2.1.2
Multiply -(-3⋅-2).
Step 7.2.4.2.1.2.1
Multiply -3 by -2.
0-1(-12-1⋅6)+0
Step 7.2.4.2.1.2.2
Multiply -1 by 6.
0-1(-12-6)+0
0-1(-12-6)+0
0-1(-12-6)+0
Step 7.2.4.2.2
Subtract 6 from -12.
0-1⋅-18+0
0-1⋅-18+0
0-1⋅-18+0
Step 7.2.5
Simplify the determinant.
Step 7.2.5.1
Multiply -1 by -18.
0+18+0
Step 7.2.5.2
Add 0 and 18.
18+0
Step 7.2.5.3
Add 18 and 0.
18
18
Dz=18
Step 7.3
Use the formula to solve for z.
z=DzD
Step 7.4
Substitute -9 for D and 18 for Dz in the formula.
z=18-9
Step 7.5
Divide 18 by -9.
z=-2
z=-2
Step 8
List the solution to the system of equations.
x=-2
y=-10
z=-2