Linear Algebra Examples
[6825][6825]
Step 1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Step 2
Step 2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
6⋅5-2⋅86⋅5−2⋅8
Step 2.2
Simplify the determinant.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 66 by 55.
30-2⋅830−2⋅8
Step 2.2.1.2
Multiply -2−2 by 88.
30-1630−16
30-1630−16
Step 2.2.2
Subtract 1616 from 3030.
1414
1414
1414
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
114[5-8-26]114[5−8−26]
Step 5
Multiply 114114 by each element of the matrix.
[114⋅5114⋅-8114⋅-2114⋅6][114⋅5114⋅−8114⋅−2114⋅6]
Step 6
Step 6.1
Combine 114114 and 55.
[514114⋅-8114⋅-2114⋅6][514114⋅−8114⋅−2114⋅6]
Step 6.2
Cancel the common factor of 22.
Step 6.2.1
Factor 22 out of 1414.
[51412(7)⋅-8114⋅-2114⋅6]⎡⎣51412(7)⋅−8114⋅−2114⋅6⎤⎦
Step 6.2.2
Factor 22 out of -8−8.
[51412⋅7⋅(2⋅-4)114⋅-2114⋅6][51412⋅7⋅(2⋅−4)114⋅−2114⋅6]
Step 6.2.3
Cancel the common factor.
[51412⋅7⋅(2⋅-4)114⋅-2114⋅6]
Step 6.2.4
Rewrite the expression.
[51417⋅-4114⋅-2114⋅6]
[51417⋅-4114⋅-2114⋅6]
Step 6.3
Combine 17 and -4.
[514-47114⋅-2114⋅6]
Step 6.4
Move the negative in front of the fraction.
[514-47114⋅-2114⋅6]
Step 6.5
Cancel the common factor of 2.
Step 6.5.1
Factor 2 out of 14.
[514-4712(7)⋅-2114⋅6]
Step 6.5.2
Factor 2 out of -2.
[514-4712⋅7⋅(2⋅-1)114⋅6]
Step 6.5.3
Cancel the common factor.
[514-4712⋅7⋅(2⋅-1)114⋅6]
Step 6.5.4
Rewrite the expression.
[514-4717⋅-1114⋅6]
[514-4717⋅-1114⋅6]
Step 6.6
Combine 17 and -1.
[514-47-17114⋅6]
Step 6.7
Move the negative in front of the fraction.
[514-47-17114⋅6]
Step 6.8
Cancel the common factor of 2.
Step 6.8.1
Factor 2 out of 14.
[514-47-1712(7)⋅6]
Step 6.8.2
Factor 2 out of 6.
[514-47-1712⋅7⋅(2⋅3)]
Step 6.8.3
Cancel the common factor.
[514-47-1712⋅7⋅(2⋅3)]
Step 6.8.4
Rewrite the expression.
[514-47-1717⋅3]
[514-47-1717⋅3]
Step 6.9
Combine 17 and 3.
[514-47-1737]
[514-47-1737]