Linear Algebra Examples
[332042321]⎡⎢⎣332042321⎤⎥⎦
Step 1
Step 1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Step 1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Step 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|4221|∣∣∣4221∣∣∣
Step 1.4
Multiply element a11a11 by its cofactor.
3|4221|3∣∣∣4221∣∣∣
Step 1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|3221|∣∣∣3221∣∣∣
Step 1.6
Multiply element a21a21 by its cofactor.
0|3221|0∣∣∣3221∣∣∣
Step 1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|3242|∣∣∣3242∣∣∣
Step 1.8
Multiply element a31a31 by its cofactor.
3|3242|3∣∣∣3242∣∣∣
Step 1.9
Add the terms together.
3|4221|+0|3221|+3|3242|3∣∣∣4221∣∣∣+0∣∣∣3221∣∣∣+3∣∣∣3242∣∣∣
3|4221|+0|3221|+3|3242|
Step 2
Multiply 0 by |3221|.
3|4221|+0+3|3242|
Step 3
Step 3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
3(4⋅1-2⋅2)+0+3|3242|
Step 3.2
Simplify the determinant.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Multiply 4 by 1.
3(4-2⋅2)+0+3|3242|
Step 3.2.1.2
Multiply -2 by 2.
3(4-4)+0+3|3242|
3(4-4)+0+3|3242|
Step 3.2.2
Subtract 4 from 4.
3⋅0+0+3|3242|
3⋅0+0+3|3242|
3⋅0+0+3|3242|
Step 4
Step 4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
3⋅0+0+3(3⋅2-4⋅2)
Step 4.2
Simplify the determinant.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply 3 by 2.
3⋅0+0+3(6-4⋅2)
Step 4.2.1.2
Multiply -4 by 2.
3⋅0+0+3(6-8)
3⋅0+0+3(6-8)
Step 4.2.2
Subtract 8 from 6.
3⋅0+0+3⋅-2
3⋅0+0+3⋅-2
3⋅0+0+3⋅-2
Step 5
Step 5.1
Simplify each term.
Step 5.1.1
Multiply 3 by 0.
0+0+3⋅-2
Step 5.1.2
Multiply 3 by -2.
0+0-6
0+0-6
Step 5.2
Add 0 and 0.
0-6
Step 5.3
Subtract 6 from 0.
-6
-6