Linear Algebra Examples
[321444123]⎡⎢⎣321444123⎤⎥⎦
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]⎡⎢⎣+−+−+−+−+⎤⎥⎦
Step 2
Step 2.1
Calculate the minor for element a11a11.
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|4423|∣∣∣4423∣∣∣
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a11=4⋅3-2⋅4a11=4⋅3−2⋅4
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 44 by 33.
a11=12-2⋅4a11=12−2⋅4
Step 2.1.2.2.1.2
Multiply -2−2 by 44.
a11=12-8a11=12−8
a11=12-8a11=12−8
Step 2.1.2.2.2
Subtract 88 from 1212.
a11=4a11=4
a11=4a11=4
a11=4a11=4
a11=4a11=4
Step 2.2
Calculate the minor for element a12a12.
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|4413|∣∣∣4413∣∣∣
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a12=4⋅3-1⋅4a12=4⋅3−1⋅4
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply 44 by 33.
a12=12-1⋅4a12=12−1⋅4
Step 2.2.2.2.1.2
Multiply -1−1 by 44.
a12=12-4a12=12−4
a12=12-4a12=12−4
Step 2.2.2.2.2
Subtract 44 from 1212.
a12=8a12=8
a12=8a12=8
a12=8a12=8
a12=8a12=8
Step 2.3
Calculate the minor for element a13a13.
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|4412|∣∣∣4412∣∣∣
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a13=4⋅2-1⋅4a13=4⋅2−1⋅4
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Multiply 44 by 22.
a13=8-1⋅4a13=8−1⋅4
Step 2.3.2.2.1.2
Multiply -1−1 by 44.
a13=8-4a13=8−4
a13=8-4a13=8−4
Step 2.3.2.2.2
Subtract 44 from 88.
a13=4a13=4
a13=4a13=4
a13=4a13=4
a13=4a13=4
Step 2.4
Calculate the minor for element a21a21.
Step 2.4.1
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|2123|∣∣∣2123∣∣∣
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a21=2⋅3-2⋅1a21=2⋅3−2⋅1
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 22 by 33.
a21=6-2⋅1a21=6−2⋅1
Step 2.4.2.2.1.2
Multiply -2−2 by 11.
a21=6-2a21=6−2
a21=6-2a21=6−2
Step 2.4.2.2.2
Subtract 22 from 66.
a21=4a21=4
a21=4a21=4
a21=4a21=4
a21=4a21=4
Step 2.5
Calculate the minor for element a22a22.
Step 2.5.1
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|3113|∣∣∣3113∣∣∣
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a22=3⋅3-1⋅1a22=3⋅3−1⋅1
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply 33 by 33.
a22=9-1⋅1a22=9−1⋅1
Step 2.5.2.2.1.2
Multiply -1−1 by 11.
a22=9-1a22=9−1
a22=9-1a22=9−1
Step 2.5.2.2.2
Subtract 11 from 99.
a22=8a22=8
a22=8a22=8
a22=8a22=8
a22=8a22=8
Step 2.6
Calculate the minor for element a23a23.
Step 2.6.1
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|3212|∣∣∣3212∣∣∣
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a23=3⋅2-1⋅2a23=3⋅2−1⋅2
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Multiply 33 by 22.
a23=6-1⋅2a23=6−1⋅2
Step 2.6.2.2.1.2
Multiply -1−1 by 22.
a23=6-2a23=6−2
a23=6-2a23=6−2
Step 2.6.2.2.2
Subtract 22 from 66.
a23=4a23=4
a23=4a23=4
a23=4a23=4
a23=4a23=4
Step 2.7
Calculate the minor for element a31a31.
Step 2.7.1
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|2144|∣∣∣2144∣∣∣
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a31=2⋅4-4⋅1a31=2⋅4−4⋅1
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 22 by 44.
a31=8-4⋅1a31=8−4⋅1
Step 2.7.2.2.1.2
Multiply -4−4 by 11.
a31=8-4a31=8−4
a31=8-4a31=8−4
Step 2.7.2.2.2
Subtract 44 from 88.
a31=4a31=4
a31=4a31=4
a31=4a31=4
a31=4a31=4
Step 2.8
Calculate the minor for element a32a32.
Step 2.8.1
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|3144|∣∣∣3144∣∣∣
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a32=3⋅4-4⋅1a32=3⋅4−4⋅1
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply 33 by 44.
a32=12-4⋅1a32=12−4⋅1
Step 2.8.2.2.1.2
Multiply -4−4 by 11.
a32=12-4a32=12−4
a32=12-4a32=12−4
Step 2.8.2.2.2
Subtract 44 from 1212.
a32=8a32=8
a32=8a32=8
a32=8a32=8
a32=8a32=8
Step 2.9
Calculate the minor for element a33a33.
Step 2.9.1
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|3244|∣∣∣3244∣∣∣
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a33=3⋅4-4⋅2a33=3⋅4−4⋅2
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Multiply 33 by 44.
a33=12-4⋅2a33=12−4⋅2
Step 2.9.2.2.1.2
Multiply -4−4 by 22.
a33=12-8a33=12−8
a33=12-8a33=12−8
Step 2.9.2.2.2
Subtract 88 from 1212.
a33=4a33=4
a33=4a33=4
a33=4a33=4
a33=4a33=4
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the -− positions on the sign chart.
[4-84-48-44-84]⎡⎢⎣4−84−48−44−84⎤⎥⎦
[4-84-48-44-84]