Linear Algebra Examples

Find the Cofactor Matrix
[321444123]321444123
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]+++++
Step 2
Use the sign chart and the given matrix to find the cofactor of each element.
Tap for more steps...
Step 2.1
Calculate the minor for element a11a11.
Tap for more steps...
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|4423|4423
Step 2.1.2
Evaluate the determinant.
Tap for more steps...
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a11=43-24a11=4324
Step 2.1.2.2
Simplify the determinant.
Tap for more steps...
Step 2.1.2.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.2.1.1
Multiply 44 by 33.
a11=12-24a11=1224
Step 2.1.2.2.1.2
Multiply -22 by 44.
a11=12-8a11=128
a11=12-8a11=128
Step 2.1.2.2.2
Subtract 88 from 1212.
a11=4a11=4
a11=4a11=4
a11=4a11=4
a11=4a11=4
Step 2.2
Calculate the minor for element a12a12.
Tap for more steps...
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|4413|4413
Step 2.2.2
Evaluate the determinant.
Tap for more steps...
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a12=43-14a12=4314
Step 2.2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.2.1.1
Multiply 44 by 33.
a12=12-14a12=1214
Step 2.2.2.2.1.2
Multiply -11 by 44.
a12=12-4a12=124
a12=12-4a12=124
Step 2.2.2.2.2
Subtract 44 from 1212.
a12=8a12=8
a12=8a12=8
a12=8a12=8
a12=8a12=8
Step 2.3
Calculate the minor for element a13a13.
Tap for more steps...
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|4412|4412
Step 2.3.2
Evaluate the determinant.
Tap for more steps...
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a13=42-14a13=4214
Step 2.3.2.2
Simplify the determinant.
Tap for more steps...
Step 2.3.2.2.1
Simplify each term.
Tap for more steps...
Step 2.3.2.2.1.1
Multiply 44 by 22.
a13=8-14a13=814
Step 2.3.2.2.1.2
Multiply -11 by 44.
a13=8-4a13=84
a13=8-4a13=84
Step 2.3.2.2.2
Subtract 44 from 88.
a13=4a13=4
a13=4a13=4
a13=4a13=4
a13=4a13=4
Step 2.4
Calculate the minor for element a21a21.
Tap for more steps...
Step 2.4.1
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|2123|2123
Step 2.4.2
Evaluate the determinant.
Tap for more steps...
Step 2.4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a21=23-21a21=2321
Step 2.4.2.2
Simplify the determinant.
Tap for more steps...
Step 2.4.2.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.2.1.1
Multiply 22 by 33.
a21=6-21a21=621
Step 2.4.2.2.1.2
Multiply -22 by 11.
a21=6-2a21=62
a21=6-2a21=62
Step 2.4.2.2.2
Subtract 22 from 66.
a21=4a21=4
a21=4a21=4
a21=4a21=4
a21=4a21=4
Step 2.5
Calculate the minor for element a22a22.
Tap for more steps...
Step 2.5.1
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|3113|3113
Step 2.5.2
Evaluate the determinant.
Tap for more steps...
Step 2.5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a22=33-11a22=3311
Step 2.5.2.2
Simplify the determinant.
Tap for more steps...
Step 2.5.2.2.1
Simplify each term.
Tap for more steps...
Step 2.5.2.2.1.1
Multiply 33 by 33.
a22=9-11a22=911
Step 2.5.2.2.1.2
Multiply -11 by 11.
a22=9-1a22=91
a22=9-1a22=91
Step 2.5.2.2.2
Subtract 11 from 99.
a22=8a22=8
a22=8a22=8
a22=8a22=8
a22=8a22=8
Step 2.6
Calculate the minor for element a23a23.
Tap for more steps...
Step 2.6.1
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|3212|3212
Step 2.6.2
Evaluate the determinant.
Tap for more steps...
Step 2.6.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a23=32-12a23=3212
Step 2.6.2.2
Simplify the determinant.
Tap for more steps...
Step 2.6.2.2.1
Simplify each term.
Tap for more steps...
Step 2.6.2.2.1.1
Multiply 33 by 22.
a23=6-12a23=612
Step 2.6.2.2.1.2
Multiply -11 by 22.
a23=6-2a23=62
a23=6-2a23=62
Step 2.6.2.2.2
Subtract 22 from 66.
a23=4a23=4
a23=4a23=4
a23=4a23=4
a23=4a23=4
Step 2.7
Calculate the minor for element a31a31.
Tap for more steps...
Step 2.7.1
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|2144|2144
Step 2.7.2
Evaluate the determinant.
Tap for more steps...
Step 2.7.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a31=24-41a31=2441
Step 2.7.2.2
Simplify the determinant.
Tap for more steps...
Step 2.7.2.2.1
Simplify each term.
Tap for more steps...
Step 2.7.2.2.1.1
Multiply 22 by 44.
a31=8-41a31=841
Step 2.7.2.2.1.2
Multiply -44 by 11.
a31=8-4a31=84
a31=8-4a31=84
Step 2.7.2.2.2
Subtract 44 from 88.
a31=4a31=4
a31=4a31=4
a31=4a31=4
a31=4a31=4
Step 2.8
Calculate the minor for element a32a32.
Tap for more steps...
Step 2.8.1
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|3144|3144
Step 2.8.2
Evaluate the determinant.
Tap for more steps...
Step 2.8.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a32=34-41a32=3441
Step 2.8.2.2
Simplify the determinant.
Tap for more steps...
Step 2.8.2.2.1
Simplify each term.
Tap for more steps...
Step 2.8.2.2.1.1
Multiply 33 by 44.
a32=12-41a32=1241
Step 2.8.2.2.1.2
Multiply -44 by 11.
a32=12-4a32=124
a32=12-4a32=124
Step 2.8.2.2.2
Subtract 44 from 1212.
a32=8a32=8
a32=8a32=8
a32=8a32=8
a32=8a32=8
Step 2.9
Calculate the minor for element a33a33.
Tap for more steps...
Step 2.9.1
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|3244|3244
Step 2.9.2
Evaluate the determinant.
Tap for more steps...
Step 2.9.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a33=34-42a33=3442
Step 2.9.2.2
Simplify the determinant.
Tap for more steps...
Step 2.9.2.2.1
Simplify each term.
Tap for more steps...
Step 2.9.2.2.1.1
Multiply 33 by 44.
a33=12-42a33=1242
Step 2.9.2.2.1.2
Multiply -44 by 22.
a33=12-8a33=128
a33=12-8a33=128
Step 2.9.2.2.2
Subtract 88 from 1212.
a33=4a33=4
a33=4a33=4
a33=4a33=4
a33=4a33=4
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[4-84-48-44-84]484484484
[4-84-48-44-84]
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay