Linear Algebra Examples
[5202504-14]
Step 1
Step 1.1
Find the eigenvalues.
Step 1.1.1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI3)
Step 1.1.2
The identity matrix or unit matrix of size 3 is the 3×3 square matrix with ones on the main diagonal and zeros elsewhere.
[100010001]
Step 1.1.3
Substitute the known values into p(λ)=determinant(A-λI3).
Step 1.1.3.1
Substitute [5202504-14] for A.
p(λ)=determinant([5202504-14]-λI3)
Step 1.1.3.2
Substitute [100010001] for I3.
p(λ)=determinant([5202504-14]-λ[100010001])
p(λ)=determinant([5202504-14]-λ[100010001])
Step 1.1.4
Simplify.
Step 1.1.4.1
Simplify each term.
Step 1.1.4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([5202504-14]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.1.4.1.2
Simplify each element in the matrix.
Step 1.1.4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([5202504-14]+[-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.1.4.1.2.2
Multiply -λ⋅0.
Step 1.1.4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([5202504-14]+[-λ0λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.1.4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([5202504-14]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([5202504-14]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.1.4.1.2.3
Multiply -λ⋅0.
Step 1.1.4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([5202504-14]+[-λ00λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.1.4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([5202504-14]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([5202504-14]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.1.4.1.2.4
Multiply -λ⋅0.
Step 1.1.4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([5202504-14]+[-λ000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.1.4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([5202504-14]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([5202504-14]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.1.4.1.2.5
Multiply -1 by 1.
p(λ)=determinant([5202504-14]+[-λ000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.1.4.1.2.6
Multiply -λ⋅0.
Step 1.1.4.1.2.6.1
Multiply 0 by -1.
p(λ)=determinant([5202504-14]+[-λ000-λ0λ-λ⋅0-λ⋅0-λ⋅1])
Step 1.1.4.1.2.6.2
Multiply 0 by λ.
p(λ)=determinant([5202504-14]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([5202504-14]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
Step 1.1.4.1.2.7
Multiply -λ⋅0.
Step 1.1.4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([5202504-14]+[-λ000-λ00λ-λ⋅0-λ⋅1])
Step 1.1.4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([5202504-14]+[-λ000-λ00-λ⋅0-λ⋅1])
p(λ)=determinant([5202504-14]+[-λ000-λ00-λ⋅0-λ⋅1])
Step 1.1.4.1.2.8
Multiply -λ⋅0.
Step 1.1.4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([5202504-14]+[-λ000-λ000λ-λ⋅1])
Step 1.1.4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([5202504-14]+[-λ000-λ000-λ⋅1])
p(λ)=determinant([5202504-14]+[-λ000-λ000-λ⋅1])
Step 1.1.4.1.2.9
Multiply -1 by 1.
p(λ)=determinant([5202504-14]+[-λ000-λ000-λ])
p(λ)=determinant([5202504-14]+[-λ000-λ000-λ])
p(λ)=determinant([5202504-14]+[-λ000-λ000-λ])
Step 1.1.4.2
Add the corresponding elements.
p(λ)=determinant[5-λ2+00+02+05-λ0+04+0-1+04-λ]
Step 1.1.4.3
Simplify each element.
Step 1.1.4.3.1
Add 2 and 0.
p(λ)=determinant[5-λ20+02+05-λ0+04+0-1+04-λ]
Step 1.1.4.3.2
Add 0 and 0.
p(λ)=determinant[5-λ202+05-λ0+04+0-1+04-λ]
Step 1.1.4.3.3
Add 2 and 0.
p(λ)=determinant[5-λ2025-λ0+04+0-1+04-λ]
Step 1.1.4.3.4
Add 0 and 0.
p(λ)=determinant[5-λ2025-λ04+0-1+04-λ]
Step 1.1.4.3.5
Add 4 and 0.
p(λ)=determinant[5-λ2025-λ04-1+04-λ]
Step 1.1.4.3.6
Add -1 and 0.
p(λ)=determinant[5-λ2025-λ04-14-λ]
p(λ)=determinant[5-λ2025-λ04-14-λ]
p(λ)=determinant[5-λ2025-λ04-14-λ]
Step 1.1.5
Find the determinant.
Step 1.1.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 3 by its cofactor and add.
Step 1.1.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.1.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.1.5.1.3
The minor for a13 is the determinant with row 1 and column 3 deleted.
|25-λ4-1|
Step 1.1.5.1.4
Multiply element a13 by its cofactor.
0|25-λ4-1|
Step 1.1.5.1.5
The minor for a23 is the determinant with row 2 and column 3 deleted.
|5-λ24-1|
Step 1.1.5.1.6
Multiply element a23 by its cofactor.
0|5-λ24-1|
Step 1.1.5.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|5-λ225-λ|
Step 1.1.5.1.8
Multiply element a33 by its cofactor.
(4-λ)|5-λ225-λ|
Step 1.1.5.1.9
Add the terms together.
p(λ)=0|25-λ4-1|+0|5-λ24-1|+(4-λ)|5-λ225-λ|
p(λ)=0|25-λ4-1|+0|5-λ24-1|+(4-λ)|5-λ225-λ|
Step 1.1.5.2
Multiply 0 by |25-λ4-1|.
p(λ)=0+0|5-λ24-1|+(4-λ)|5-λ225-λ|
Step 1.1.5.3
Multiply 0 by |5-λ24-1|.
p(λ)=0+0+(4-λ)|5-λ225-λ|
Step 1.1.5.4
Evaluate |5-λ225-λ|.
Step 1.1.5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=0+0+(4-λ)((5-λ)(5-λ)-2⋅2)
Step 1.1.5.4.2
Simplify the determinant.
Step 1.1.5.4.2.1
Simplify each term.
Step 1.1.5.4.2.1.1
Expand (5-λ)(5-λ) using the FOIL Method.
Step 1.1.5.4.2.1.1.1
Apply the distributive property.
p(λ)=0+0+(4-λ)(5(5-λ)-λ(5-λ)-2⋅2)
Step 1.1.5.4.2.1.1.2
Apply the distributive property.
p(λ)=0+0+(4-λ)(5⋅5+5(-λ)-λ(5-λ)-2⋅2)
Step 1.1.5.4.2.1.1.3
Apply the distributive property.
p(λ)=0+0+(4-λ)(5⋅5+5(-λ)-λ⋅5-λ(-λ)-2⋅2)
p(λ)=0+0+(4-λ)(5⋅5+5(-λ)-λ⋅5-λ(-λ)-2⋅2)
Step 1.1.5.4.2.1.2
Simplify and combine like terms.
Step 1.1.5.4.2.1.2.1
Simplify each term.
Step 1.1.5.4.2.1.2.1.1
Multiply 5 by 5.
p(λ)=0+0+(4-λ)(25+5(-λ)-λ⋅5-λ(-λ)-2⋅2)
Step 1.1.5.4.2.1.2.1.2
Multiply -1 by 5.
p(λ)=0+0+(4-λ)(25-5λ-λ⋅5-λ(-λ)-2⋅2)
Step 1.1.5.4.2.1.2.1.3
Multiply 5 by -1.
p(λ)=0+0+(4-λ)(25-5λ-5λ-λ(-λ)-2⋅2)
Step 1.1.5.4.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=0+0+(4-λ)(25-5λ-5λ-1⋅-1λ⋅λ-2⋅2)
Step 1.1.5.4.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 1.1.5.4.2.1.2.1.5.1
Move λ.
p(λ)=0+0+(4-λ)(25-5λ-5λ-1⋅-1(λ⋅λ)-2⋅2)
Step 1.1.5.4.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=0+0+(4-λ)(25-5λ-5λ-1⋅-1λ2-2⋅2)
p(λ)=0+0+(4-λ)(25-5λ-5λ-1⋅-1λ2-2⋅2)
Step 1.1.5.4.2.1.2.1.6
Multiply -1 by -1.
p(λ)=0+0+(4-λ)(25-5λ-5λ+1λ2-2⋅2)
Step 1.1.5.4.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=0+0+(4-λ)(25-5λ-5λ+λ2-2⋅2)
p(λ)=0+0+(4-λ)(25-5λ-5λ+λ2-2⋅2)
Step 1.1.5.4.2.1.2.2
Subtract 5λ from -5λ.
p(λ)=0+0+(4-λ)(25-10λ+λ2-2⋅2)
p(λ)=0+0+(4-λ)(25-10λ+λ2-2⋅2)
Step 1.1.5.4.2.1.3
Multiply -2 by 2.
p(λ)=0+0+(4-λ)(25-10λ+λ2-4)
p(λ)=0+0+(4-λ)(25-10λ+λ2-4)
Step 1.1.5.4.2.2
Subtract 4 from 25.
p(λ)=0+0+(4-λ)(-10λ+λ2+21)
Step 1.1.5.4.2.3
Reorder -10λ and λ2.
p(λ)=0+0+(4-λ)(λ2-10λ+21)
p(λ)=0+0+(4-λ)(λ2-10λ+21)
p(λ)=0+0+(4-λ)(λ2-10λ+21)
Step 1.1.5.5
Simplify the determinant.
Step 1.1.5.5.1
Combine the opposite terms in 0+0+(4-λ)(λ2-10λ+21).
Step 1.1.5.5.1.1
Add 0 and 0.
p(λ)=0+(4-λ)(λ2-10λ+21)
Step 1.1.5.5.1.2
Add 0 and (4-λ)(λ2-10λ+21).
p(λ)=(4-λ)(λ2-10λ+21)
p(λ)=(4-λ)(λ2-10λ+21)
Step 1.1.5.5.2
Expand (4-λ)(λ2-10λ+21) by multiplying each term in the first expression by each term in the second expression.
p(λ)=4λ2+4(-10λ)+4⋅21-λ⋅λ2-λ(-10λ)-λ⋅21
Step 1.1.5.5.3
Simplify each term.
Step 1.1.5.5.3.1
Multiply -10 by 4.
p(λ)=4λ2-40λ+4⋅21-λ⋅λ2-λ(-10λ)-λ⋅21
Step 1.1.5.5.3.2
Multiply 4 by 21.
p(λ)=4λ2-40λ+84-λ⋅λ2-λ(-10λ)-λ⋅21
Step 1.1.5.5.3.3
Multiply λ by λ2 by adding the exponents.
Step 1.1.5.5.3.3.1
Move λ2.
p(λ)=4λ2-40λ+84-(λ2λ)-λ(-10λ)-λ⋅21
Step 1.1.5.5.3.3.2
Multiply λ2 by λ.
Step 1.1.5.5.3.3.2.1
Raise λ to the power of 1.
p(λ)=4λ2-40λ+84-(λ2λ1)-λ(-10λ)-λ⋅21
Step 1.1.5.5.3.3.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=4λ2-40λ+84-λ2+1-λ(-10λ)-λ⋅21
p(λ)=4λ2-40λ+84-λ2+1-λ(-10λ)-λ⋅21
Step 1.1.5.5.3.3.3
Add 2 and 1.
p(λ)=4λ2-40λ+84-λ3-λ(-10λ)-λ⋅21
p(λ)=4λ2-40λ+84-λ3-λ(-10λ)-λ⋅21
Step 1.1.5.5.3.4
Rewrite using the commutative property of multiplication.
p(λ)=4λ2-40λ+84-λ3-1⋅-10λ⋅λ-λ⋅21
Step 1.1.5.5.3.5
Multiply λ by λ by adding the exponents.
Step 1.1.5.5.3.5.1
Move λ.
p(λ)=4λ2-40λ+84-λ3-1⋅-10(λ⋅λ)-λ⋅21
Step 1.1.5.5.3.5.2
Multiply λ by λ.
p(λ)=4λ2-40λ+84-λ3-1⋅-10λ2-λ⋅21
p(λ)=4λ2-40λ+84-λ3-1⋅-10λ2-λ⋅21
Step 1.1.5.5.3.6
Multiply -1 by -10.
p(λ)=4λ2-40λ+84-λ3+10λ2-λ⋅21
Step 1.1.5.5.3.7
Multiply 21 by -1.
p(λ)=4λ2-40λ+84-λ3+10λ2-21λ
p(λ)=4λ2-40λ+84-λ3+10λ2-21λ
Step 1.1.5.5.4
Add 4λ2 and 10λ2.
p(λ)=14λ2-40λ+84-λ3-21λ
Step 1.1.5.5.5
Subtract 21λ from -40λ.
p(λ)=14λ2-61λ+84-λ3
Step 1.1.5.5.6
Move 84.
p(λ)=14λ2-61λ-λ3+84
Step 1.1.5.5.7
Move -61λ.
p(λ)=14λ2-λ3-61λ+84
Step 1.1.5.5.8
Reorder 14λ2 and -λ3.
p(λ)=-λ3+14λ2-61λ+84
p(λ)=-λ3+14λ2-61λ+84
p(λ)=-λ3+14λ2-61λ+84
Step 1.1.6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
-λ3+14λ2-61λ+84=0
Step 1.1.7
Solve for λ.
Step 1.1.7.1
Factor the left side of the equation.
Step 1.1.7.1.1
Factor -λ3+14λ2-61λ+84 using the rational roots test.
Step 1.1.7.1.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form pq where p is a factor of the constant and q is a factor of the leading coefficient.
p=±1,±84,±2,±42,±3,±28,±4,±21,±6,±14,±7,±12
q=±1
Step 1.1.7.1.1.2
Find every combination of ±pq. These are the possible roots of the polynomial function.
±1,±84,±2,±42,±3,±28,±4,±21,±6,±14,±7,±12
Step 1.1.7.1.1.3
Substitute 3 and simplify the expression. In this case, the expression is equal to 0 so 3 is a root of the polynomial.
Step 1.1.7.1.1.3.1
Substitute 3 into the polynomial.
-33+14⋅32-61⋅3+84
Step 1.1.7.1.1.3.2
Raise 3 to the power of 3.
-1⋅27+14⋅32-61⋅3+84
Step 1.1.7.1.1.3.3
Multiply -1 by 27.
-27+14⋅32-61⋅3+84
Step 1.1.7.1.1.3.4
Raise 3 to the power of 2.
-27+14⋅9-61⋅3+84
Step 1.1.7.1.1.3.5
Multiply 14 by 9.
-27+126-61⋅3+84
Step 1.1.7.1.1.3.6
Add -27 and 126.
99-61⋅3+84
Step 1.1.7.1.1.3.7
Multiply -61 by 3.
99-183+84
Step 1.1.7.1.1.3.8
Subtract 183 from 99.
-84+84
Step 1.1.7.1.1.3.9
Add -84 and 84.
0
0
Step 1.1.7.1.1.4
Since 3 is a known root, divide the polynomial by λ-3 to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
-λ3+14λ2-61λ+84λ-3
Step 1.1.7.1.1.5
Divide -λ3+14λ2-61λ+84 by λ-3.
Step 1.1.7.1.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 |
Step 1.1.7.1.1.5.2
Divide the highest order term in the dividend -λ3 by the highest order term in divisor λ.
- | λ2 | ||||||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 |
Step 1.1.7.1.1.5.3
Multiply the new quotient term by the divisor.
- | λ2 | ||||||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 | |
- | λ3 | + | 3λ2 |
Step 1.1.7.1.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in -λ3+3λ2
- | λ2 | ||||||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 | |
+ | λ3 | - | 3λ2 |
Step 1.1.7.1.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | λ2 | ||||||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 | |
+ | λ3 | - | 3λ2 | ||||||||
+ | 11λ2 |
Step 1.1.7.1.1.5.6
Pull the next terms from the original dividend down into the current dividend.
- | λ2 | ||||||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 | |
+ | λ3 | - | 3λ2 | ||||||||
+ | 11λ2 | - | 61λ |
Step 1.1.7.1.1.5.7
Divide the highest order term in the dividend 11λ2 by the highest order term in divisor λ.
- | λ2 | + | 11λ | ||||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 | |
+ | λ3 | - | 3λ2 | ||||||||
+ | 11λ2 | - | 61λ |
Step 1.1.7.1.1.5.8
Multiply the new quotient term by the divisor.
- | λ2 | + | 11λ | ||||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 | |
+ | λ3 | - | 3λ2 | ||||||||
+ | 11λ2 | - | 61λ | ||||||||
+ | 11λ2 | - | 33λ |
Step 1.1.7.1.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in 11λ2-33λ
- | λ2 | + | 11λ | ||||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 | |
+ | λ3 | - | 3λ2 | ||||||||
+ | 11λ2 | - | 61λ | ||||||||
- | 11λ2 | + | 33λ |
Step 1.1.7.1.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | λ2 | + | 11λ | ||||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 | |
+ | λ3 | - | 3λ2 | ||||||||
+ | 11λ2 | - | 61λ | ||||||||
- | 11λ2 | + | 33λ | ||||||||
- | 28λ |
Step 1.1.7.1.1.5.11
Pull the next terms from the original dividend down into the current dividend.
- | λ2 | + | 11λ | ||||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 | |
+ | λ3 | - | 3λ2 | ||||||||
+ | 11λ2 | - | 61λ | ||||||||
- | 11λ2 | + | 33λ | ||||||||
- | 28λ | + | 84 |
Step 1.1.7.1.1.5.12
Divide the highest order term in the dividend -28λ by the highest order term in divisor λ.
- | λ2 | + | 11λ | - | 28 | ||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 | |
+ | λ3 | - | 3λ2 | ||||||||
+ | 11λ2 | - | 61λ | ||||||||
- | 11λ2 | + | 33λ | ||||||||
- | 28λ | + | 84 |
Step 1.1.7.1.1.5.13
Multiply the new quotient term by the divisor.
- | λ2 | + | 11λ | - | 28 | ||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 | |
+ | λ3 | - | 3λ2 | ||||||||
+ | 11λ2 | - | 61λ | ||||||||
- | 11λ2 | + | 33λ | ||||||||
- | 28λ | + | 84 | ||||||||
- | 28λ | + | 84 |
Step 1.1.7.1.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in -28λ+84
- | λ2 | + | 11λ | - | 28 | ||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 | |
+ | λ3 | - | 3λ2 | ||||||||
+ | 11λ2 | - | 61λ | ||||||||
- | 11λ2 | + | 33λ | ||||||||
- | 28λ | + | 84 | ||||||||
+ | 28λ | - | 84 |
Step 1.1.7.1.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | λ2 | + | 11λ | - | 28 | ||||||
λ | - | 3 | - | λ3 | + | 14λ2 | - | 61λ | + | 84 | |
+ | λ3 | - | 3λ2 | ||||||||
+ | 11λ2 | - | 61λ | ||||||||
- | 11λ2 | + | 33λ | ||||||||
- | 28λ | + | 84 | ||||||||
+ | 28λ | - | 84 | ||||||||
0 |
Step 1.1.7.1.1.5.16
Since the remainder is 0, the final answer is the quotient.
-λ2+11λ-28
-λ2+11λ-28
Step 1.1.7.1.1.6
Write -λ3+14λ2-61λ+84 as a set of factors.
(λ-3)(-λ2+11λ-28)=0
(λ-3)(-λ2+11λ-28)=0
Step 1.1.7.1.2
Factor by grouping.
Step 1.1.7.1.2.1
Factor by grouping.
Step 1.1.7.1.2.1.1
For a polynomial of the form ax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=-1⋅-28=28 and whose sum is b=11.
Step 1.1.7.1.2.1.1.1
Factor 11 out of 11λ.
(λ-3)(-λ2+11(λ)-28)=0
Step 1.1.7.1.2.1.1.2
Rewrite 11 as 4 plus 7
(λ-3)(-λ2+(4+7)λ-28)=0
Step 1.1.7.1.2.1.1.3
Apply the distributive property.
(λ-3)(-λ2+4λ+7λ-28)=0
(λ-3)(-λ2+4λ+7λ-28)=0
Step 1.1.7.1.2.1.2
Factor out the greatest common factor from each group.
Step 1.1.7.1.2.1.2.1
Group the first two terms and the last two terms.
(λ-3)((-λ2+4λ)+7λ-28)=0
Step 1.1.7.1.2.1.2.2
Factor out the greatest common factor (GCF) from each group.
(λ-3)(λ(-λ+4)-7(-λ+4))=0
(λ-3)(λ(-λ+4)-7(-λ+4))=0
Step 1.1.7.1.2.1.3
Factor the polynomial by factoring out the greatest common factor, -λ+4.
(λ-3)((-λ+4)(λ-7))=0
(λ-3)((-λ+4)(λ-7))=0
Step 1.1.7.1.2.2
Remove unnecessary parentheses.
(λ-3)(-λ+4)(λ-7)=0
(λ-3)(-λ+4)(λ-7)=0
(λ-3)(-λ+4)(λ-7)=0
Step 1.1.7.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
λ-3=0
-λ+4=0
λ-7=0
Step 1.1.7.3
Set λ-3 equal to 0 and solve for λ.
Step 1.1.7.3.1
Set λ-3 equal to 0.
λ-3=0
Step 1.1.7.3.2
Add 3 to both sides of the equation.
λ=3
λ=3
Step 1.1.7.4
Set -λ+4 equal to 0 and solve for λ.
Step 1.1.7.4.1
Set -λ+4 equal to 0.
-λ+4=0
Step 1.1.7.4.2
Solve -λ+4=0 for λ.
Step 1.1.7.4.2.1
Subtract 4 from both sides of the equation.
-λ=-4
Step 1.1.7.4.2.2
Divide each term in -λ=-4 by -1 and simplify.
Step 1.1.7.4.2.2.1
Divide each term in -λ=-4 by -1.
-λ-1=-4-1
Step 1.1.7.4.2.2.2
Simplify the left side.
Step 1.1.7.4.2.2.2.1
Dividing two negative values results in a positive value.
λ1=-4-1
Step 1.1.7.4.2.2.2.2
Divide λ by 1.
λ=-4-1
λ=-4-1
Step 1.1.7.4.2.2.3
Simplify the right side.
Step 1.1.7.4.2.2.3.1
Divide -4 by -1.
λ=4
λ=4
λ=4
λ=4
λ=4
Step 1.1.7.5
Set λ-7 equal to 0 and solve for λ.
Step 1.1.7.5.1
Set λ-7 equal to 0.
λ-7=0
Step 1.1.7.5.2
Add 7 to both sides of the equation.
λ=7
λ=7
Step 1.1.7.6
The final solution is all the values that make (λ-3)(-λ+4)(λ-7)=0 true.
λ=3,4,7
λ=3,4,7
λ=3,4,7
Step 1.2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where N is the null space and I is the identity matrix.
εA=N(A-λI3)
Step 1.3
Find the eigenvector using the eigenvalue λ=3.
Step 1.3.1
Substitute the known values into the formula.
N([5202504-14]-3[100010001])
Step 1.3.2
Simplify.
Step 1.3.2.1
Simplify each term.
Step 1.3.2.1.1
Multiply -3 by each element of the matrix.
[5202504-14]+[-3⋅1-3⋅0-3⋅0-3⋅0-3⋅1-3⋅0-3⋅0-3⋅0-3⋅1]
Step 1.3.2.1.2
Simplify each element in the matrix.
Step 1.3.2.1.2.1
Multiply -3 by 1.
[5202504-14]+[-3-3⋅0-3⋅0-3⋅0-3⋅1-3⋅0-3⋅0-3⋅0-3⋅1]
Step 1.3.2.1.2.2
Multiply -3 by 0.
[5202504-14]+[-30-3⋅0-3⋅0-3⋅1-3⋅0-3⋅0-3⋅0-3⋅1]
Step 1.3.2.1.2.3
Multiply -3 by 0.
[5202504-14]+[-300-3⋅0-3⋅1-3⋅0-3⋅0-3⋅0-3⋅1]
Step 1.3.2.1.2.4
Multiply -3 by 0.
[5202504-14]+[-3000-3⋅1-3⋅0-3⋅0-3⋅0-3⋅1]
Step 1.3.2.1.2.5
Multiply -3 by 1.
[5202504-14]+[-3000-3-3⋅0-3⋅0-3⋅0-3⋅1]
Step 1.3.2.1.2.6
Multiply -3 by 0.
[5202504-14]+[-3000-30-3⋅0-3⋅0-3⋅1]
Step 1.3.2.1.2.7
Multiply -3 by 0.
[5202504-14]+[-3000-300-3⋅0-3⋅1]
Step 1.3.2.1.2.8
Multiply -3 by 0.
[5202504-14]+[-3000-3000-3⋅1]
Step 1.3.2.1.2.9
Multiply -3 by 1.
[5202504-14]+[-3000-3000-3]
[5202504-14]+[-3000-3000-3]
[5202504-14]+[-3000-3000-3]
Step 1.3.2.2
Add the corresponding elements.
[5-32+00+02+05-30+04+0-1+04-3]
Step 1.3.2.3
Simplify each element.
Step 1.3.2.3.1
Subtract 3 from 5.
[22+00+02+05-30+04+0-1+04-3]
Step 1.3.2.3.2
Add 2 and 0.
[220+02+05-30+04+0-1+04-3]
Step 1.3.2.3.3
Add 0 and 0.
[2202+05-30+04+0-1+04-3]
Step 1.3.2.3.4
Add 2 and 0.
[22025-30+04+0-1+04-3]
Step 1.3.2.3.5
Subtract 3 from 5.
[220220+04+0-1+04-3]
Step 1.3.2.3.6
Add 0 and 0.
[2202204+0-1+04-3]
Step 1.3.2.3.7
Add 4 and 0.
[2202204-1+04-3]
Step 1.3.2.3.8
Add -1 and 0.
[2202204-14-3]
Step 1.3.2.3.9
Subtract 3 from 4.
[2202204-11]
[2202204-11]
[2202204-11]
Step 1.3.3
Find the null space when λ=3.
Step 1.3.3.1
Write as an augmented matrix for Ax=0.
[220022004-110]
Step 1.3.3.2
Find the reduced row echelon form.
Step 1.3.3.2.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
Step 1.3.3.2.1.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
[2222020222004-110]
Step 1.3.3.2.1.2
Simplify R1.
[110022004-110]
[110022004-110]
Step 1.3.3.2.2
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
Step 1.3.3.2.2.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
[11002-2⋅12-2⋅10-2⋅00-2⋅04-110]
Step 1.3.3.2.2.2
Simplify R2.
[110000004-110]
[110000004-110]
Step 1.3.3.2.3
Perform the row operation R3=R3-4R1 to make the entry at 3,1 a 0.
Step 1.3.3.2.3.1
Perform the row operation R3=R3-4R1 to make the entry at 3,1 a 0.
[110000004-4⋅1-1-4⋅11-4⋅00-4⋅0]
Step 1.3.3.2.3.2
Simplify R3.
[110000000-510]
[110000000-510]
Step 1.3.3.2.4
Swap R3 with R2 to put a nonzero entry at 2,2.
[11000-5100000]
Step 1.3.3.2.5
Multiply each element of R2 by -15 to make the entry at 2,2 a 1.
Step 1.3.3.2.5.1
Multiply each element of R2 by -15 to make the entry at 2,2 a 1.
[1100-15⋅0-15⋅-5-15⋅1-15⋅00000]
Step 1.3.3.2.5.2
Simplify R2.
[110001-1500000]
[110001-1500000]
Step 1.3.3.2.6
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
Step 1.3.3.2.6.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10+150-001-1500000]
Step 1.3.3.2.6.2
Simplify R1.
[1015001-1500000]
[1015001-1500000]
[1015001-1500000]
Step 1.3.3.3
Use the result matrix to declare the final solution to the system of equations.
x+15z=0
y-15z=0
0=0
Step 1.3.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xyz]=[-z5z5z]
Step 1.3.3.5
Write the solution as a linear combination of vectors.
[xyz]=z[-15151]
Step 1.3.3.6
Write as a solution set.
{z[-15151]|z∈R}
Step 1.3.3.7
The solution is the set of vectors created from the free variables of the system.
{[-15151]}
{[-15151]}
{[-15151]}
Step 1.4
Find the eigenvector using the eigenvalue λ=4.
Step 1.4.1
Substitute the known values into the formula.
N([5202504-14]-4[100010001])
Step 1.4.2
Simplify.
Step 1.4.2.1
Simplify each term.
Step 1.4.2.1.1
Multiply -4 by each element of the matrix.
[5202504-14]+[-4⋅1-4⋅0-4⋅0-4⋅0-4⋅1-4⋅0-4⋅0-4⋅0-4⋅1]
Step 1.4.2.1.2
Simplify each element in the matrix.
Step 1.4.2.1.2.1
Multiply -4 by 1.
[5202504-14]+[-4-4⋅0-4⋅0-4⋅0-4⋅1-4⋅0-4⋅0-4⋅0-4⋅1]
Step 1.4.2.1.2.2
Multiply -4 by 0.
[5202504-14]+[-40-4⋅0-4⋅0-4⋅1-4⋅0-4⋅0-4⋅0-4⋅1]
Step 1.4.2.1.2.3
Multiply -4 by 0.
[5202504-14]+[-400-4⋅0-4⋅1-4⋅0-4⋅0-4⋅0-4⋅1]
Step 1.4.2.1.2.4
Multiply -4 by 0.
[5202504-14]+[-4000-4⋅1-4⋅0-4⋅0-4⋅0-4⋅1]
Step 1.4.2.1.2.5
Multiply -4 by 1.
[5202504-14]+[-4000-4-4⋅0-4⋅0-4⋅0-4⋅1]
Step 1.4.2.1.2.6
Multiply -4 by 0.
[5202504-14]+[-4000-40-4⋅0-4⋅0-4⋅1]
Step 1.4.2.1.2.7
Multiply -4 by 0.
[5202504-14]+[-4000-400-4⋅0-4⋅1]
Step 1.4.2.1.2.8
Multiply -4 by 0.
[5202504-14]+[-4000-4000-4⋅1]
Step 1.4.2.1.2.9
Multiply -4 by 1.
[5202504-14]+[-4000-4000-4]
[5202504-14]+[-4000-4000-4]
[5202504-14]+[-4000-4000-4]
Step 1.4.2.2
Add the corresponding elements.
[5-42+00+02+05-40+04+0-1+04-4]
Step 1.4.2.3
Simplify each element.
Step 1.4.2.3.1
Subtract 4 from 5.
[12+00+02+05-40+04+0-1+04-4]
Step 1.4.2.3.2
Add 2 and 0.
[120+02+05-40+04+0-1+04-4]
Step 1.4.2.3.3
Add 0 and 0.
[1202+05-40+04+0-1+04-4]
Step 1.4.2.3.4
Add 2 and 0.
[12025-40+04+0-1+04-4]
Step 1.4.2.3.5
Subtract 4 from 5.
[120210+04+0-1+04-4]
Step 1.4.2.3.6
Add 0 and 0.
[1202104+0-1+04-4]
Step 1.4.2.3.7
Add 4 and 0.
[1202104-1+04-4]
Step 1.4.2.3.8
Add -1 and 0.
[1202104-14-4]
Step 1.4.2.3.9
Subtract 4 from 4.
[1202104-10]
[1202104-10]
[1202104-10]
Step 1.4.3
Find the null space when λ=4.
Step 1.4.3.1
Write as an augmented matrix for Ax=0.
[120021004-100]
Step 1.4.3.2
Find the reduced row echelon form.
Step 1.4.3.2.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
Step 1.4.3.2.1.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
[12002-2⋅11-2⋅20-2⋅00-2⋅04-100]
Step 1.4.3.2.1.2
Simplify R2.
[12000-3004-100]
[12000-3004-100]
Step 1.4.3.2.2
Perform the row operation R3=R3-4R1 to make the entry at 3,1 a 0.
Step 1.4.3.2.2.1
Perform the row operation R3=R3-4R1 to make the entry at 3,1 a 0.
[12000-3004-4⋅1-1-4⋅20-4⋅00-4⋅0]
Step 1.4.3.2.2.2
Simplify R3.
[12000-3000-900]
[12000-3000-900]
Step 1.4.3.2.3
Multiply each element of R2 by -13 to make the entry at 2,2 a 1.
Step 1.4.3.2.3.1
Multiply each element of R2 by -13 to make the entry at 2,2 a 1.
[1200-13⋅0-13⋅-3-13⋅0-13⋅00-900]
Step 1.4.3.2.3.2
Simplify R2.
[120001000-900]
[120001000-900]
Step 1.4.3.2.4
Perform the row operation R3=R3+9R2 to make the entry at 3,2 a 0.
Step 1.4.3.2.4.1
Perform the row operation R3=R3+9R2 to make the entry at 3,2 a 0.
[120001000+9⋅0-9+9⋅10+9⋅00+9⋅0]
Step 1.4.3.2.4.2
Simplify R3.
[120001000000]
[120001000000]
Step 1.4.3.2.5
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
Step 1.4.3.2.5.1
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
[1-2⋅02-2⋅10-2⋅00-2⋅001000000]
Step 1.4.3.2.5.2
Simplify R1.
[100001000000]
[100001000000]
[100001000000]
Step 1.4.3.3
Use the result matrix to declare the final solution to the system of equations.
x=0
y=0
0=0
Step 1.4.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xyz]=[00z]
Step 1.4.3.5
Write the solution as a linear combination of vectors.
[xyz]=z[001]
Step 1.4.3.6
Write as a solution set.
{z[001]|z∈R}
Step 1.4.3.7
The solution is the set of vectors created from the free variables of the system.
{[001]}
{[001]}
{[001]}
Step 1.5
Find the eigenvector using the eigenvalue λ=7.
Step 1.5.1
Substitute the known values into the formula.
N([5202504-14]-7[100010001])
Step 1.5.2
Simplify.
Step 1.5.2.1
Simplify each term.
Step 1.5.2.1.1
Multiply -7 by each element of the matrix.
[5202504-14]+[-7⋅1-7⋅0-7⋅0-7⋅0-7⋅1-7⋅0-7⋅0-7⋅0-7⋅1]
Step 1.5.2.1.2
Simplify each element in the matrix.
Step 1.5.2.1.2.1
Multiply -7 by 1.
[5202504-14]+[-7-7⋅0-7⋅0-7⋅0-7⋅1-7⋅0-7⋅0-7⋅0-7⋅1]
Step 1.5.2.1.2.2
Multiply -7 by 0.
[5202504-14]+[-70-7⋅0-7⋅0-7⋅1-7⋅0-7⋅0-7⋅0-7⋅1]
Step 1.5.2.1.2.3
Multiply -7 by 0.
[5202504-14]+[-700-7⋅0-7⋅1-7⋅0-7⋅0-7⋅0-7⋅1]
Step 1.5.2.1.2.4
Multiply -7 by 0.
[5202504-14]+[-7000-7⋅1-7⋅0-7⋅0-7⋅0-7⋅1]
Step 1.5.2.1.2.5
Multiply -7 by 1.
[5202504-14]+[-7000-7-7⋅0-7⋅0-7⋅0-7⋅1]
Step 1.5.2.1.2.6
Multiply -7 by 0.
[5202504-14]+[-7000-70-7⋅0-7⋅0-7⋅1]
Step 1.5.2.1.2.7
Multiply -7 by 0.
[5202504-14]+[-7000-700-7⋅0-7⋅1]
Step 1.5.2.1.2.8
Multiply -7 by 0.
[5202504-14]+[-7000-7000-7⋅1]
Step 1.5.2.1.2.9
Multiply -7 by 1.
[5202504-14]+[-7000-7000-7]
[5202504-14]+[-7000-7000-7]
[5202504-14]+[-7000-7000-7]
Step 1.5.2.2
Add the corresponding elements.
[5-72+00+02+05-70+04+0-1+04-7]
Step 1.5.2.3
Simplify each element.
Step 1.5.2.3.1
Subtract 7 from 5.
[-22+00+02+05-70+04+0-1+04-7]
Step 1.5.2.3.2
Add 2 and 0.
[-220+02+05-70+04+0-1+04-7]
Step 1.5.2.3.3
Add 0 and 0.
[-2202+05-70+04+0-1+04-7]
Step 1.5.2.3.4
Add 2 and 0.
[-22025-70+04+0-1+04-7]
Step 1.5.2.3.5
Subtract 7 from 5.
[-2202-20+04+0-1+04-7]
Step 1.5.2.3.6
Add 0 and 0.
[-2202-204+0-1+04-7]
Step 1.5.2.3.7
Add 4 and 0.
[-2202-204-1+04-7]
Step 1.5.2.3.8
Add -1 and 0.
[-2202-204-14-7]
Step 1.5.2.3.9
Subtract 7 from 4.
[-2202-204-1-3]
[-2202-204-1-3]
[-2202-204-1-3]
Step 1.5.3
Find the null space when λ=7.
Step 1.5.3.1
Write as an augmented matrix for Ax=0.
[-22002-2004-1-30]
Step 1.5.3.2
Find the reduced row echelon form.
Step 1.5.3.2.1
Multiply each element of R1 by -12 to make the entry at 1,1 a 1.
Step 1.5.3.2.1.1
Multiply each element of R1 by -12 to make the entry at 1,1 a 1.
[-12⋅-2-12⋅2-12⋅0-12⋅02-2004-1-30]
Step 1.5.3.2.1.2
Simplify R1.
[1-1002-2004-1-30]
[1-1002-2004-1-30]
Step 1.5.3.2.2
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
Step 1.5.3.2.2.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
[1-1002-2⋅1-2-2⋅-10-2⋅00-2⋅04-1-30]
Step 1.5.3.2.2.2
Simplify R2.
[1-10000004-1-30]
[1-10000004-1-30]
Step 1.5.3.2.3
Perform the row operation R3=R3-4R1 to make the entry at 3,1 a 0.
Step 1.5.3.2.3.1
Perform the row operation R3=R3-4R1 to make the entry at 3,1 a 0.
[1-10000004-4⋅1-1-4⋅-1-3-4⋅00-4⋅0]
Step 1.5.3.2.3.2
Simplify R3.
[1-100000003-30]
[1-100000003-30]
Step 1.5.3.2.4
Swap R3 with R2 to put a nonzero entry at 2,2.
[1-10003-300000]
Step 1.5.3.2.5
Multiply each element of R2 by 13 to make the entry at 2,2 a 1.
Step 1.5.3.2.5.1
Multiply each element of R2 by 13 to make the entry at 2,2 a 1.
[1-1000333-33030000]
Step 1.5.3.2.5.2
Simplify R2.
[1-10001-100000]
[1-10001-100000]
Step 1.5.3.2.6
Perform the row operation R1=R1+R2 to make the entry at 1,2 a 0.
Step 1.5.3.2.6.1
Perform the row operation R1=R1+R2 to make the entry at 1,2 a 0.
[1+0-1+1⋅10-10+001-100000]
Step 1.5.3.2.6.2
Simplify R1.
[10-1001-100000]
[10-1001-100000]
[10-1001-100000]
Step 1.5.3.3
Use the result matrix to declare the final solution to the system of equations.
x-z=0
y-z=0
0=0
Step 1.5.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xyz]=[zzz]
Step 1.5.3.5
Write the solution as a linear combination of vectors.
[xyz]=z[111]
Step 1.5.3.6
Write as a solution set.
{z[111]|z∈R}
Step 1.5.3.7
The solution is the set of vectors created from the free variables of the system.
{[111]}
{[111]}
{[111]}
Step 1.6
The eigenspace of A is the list of the vector space for each eigenvalue.
{[-15151],[001],[111]}
{[-15151],[001],[111]}
Step 2
Define P as a matrix of the eigenvectors.
P=[-15011501111]
Step 3
Step 3.1
Find the determinant.
Step 3.1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Step 3.1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 3.1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 3.1.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|15111|
Step 3.1.1.4
Multiply element a12 by its cofactor.
0|15111|
Step 3.1.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|-15111|
Step 3.1.1.6
Multiply element a22 by its cofactor.
0|-15111|
Step 3.1.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-151151|
Step 3.1.1.8
Multiply element a32 by its cofactor.
-1|-151151|
Step 3.1.1.9
Add the terms together.
0|15111|+0|-15111|-1|-151151|
0|15111|+0|-15111|-1|-151151|
Step 3.1.2
Multiply 0 by |15111|.
0+0|-15111|-1|-151151|
Step 3.1.3
Multiply 0 by |-15111|.
0+0-1|-151151|
Step 3.1.4
Evaluate |-151151|.
Step 3.1.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0+0-1(-15⋅1-15⋅1)
Step 3.1.4.2
Simplify the determinant.
Step 3.1.4.2.1
Simplify each term.
Step 3.1.4.2.1.1
Multiply -1 by 1.
0+0-1(-15-15⋅1)
Step 3.1.4.2.1.2
Multiply -1 by 1.
0+0-1(-15-15)
0+0-1(-15-15)
Step 3.1.4.2.2
Combine the numerators over the common denominator.
0+0-1-1-15
Step 3.1.4.2.3
Subtract 1 from -1.
0+0-1(-25)
Step 3.1.4.2.4
Move the negative in front of the fraction.
0+0-1(-25)
0+0-1(-25)
0+0-1(-25)
Step 3.1.5
Simplify the determinant.
Step 3.1.5.1
Multiply -1(-25).
Step 3.1.5.1.1
Multiply -1 by -1.
0+0+1(25)
Step 3.1.5.1.2
Multiply 25 by 1.
0+0+25
0+0+25
Step 3.1.5.2
Add 0 and 0.
0+25
Step 3.1.5.3
Add 0 and 25.
25
25
25
Step 3.2
Since the determinant is non-zero, the inverse exists.
Step 3.3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
P-1=[-15011001501010111001]
Step 3.4
Find the reduced row echelon form.
Step 3.4.1
Multiply each element of R1 by -5 to make the entry at 1,1 a 1.
Step 3.4.1.1
Multiply each element of R1 by -5 to make the entry at 1,1 a 1.
P-1=[-5(-15)-5⋅0-5⋅1-5⋅1-5⋅0-5⋅01501010111001]
Step 3.4.1.2
Simplify R1.
P-1=[10-5-5001501010111001]
P-1=[10-5-5001501010111001]
Step 3.4.2
Perform the row operation R2=R2-15R1 to make the entry at 2,1 a 0.
Step 3.4.2.1
Perform the row operation R2=R2-15R1 to make the entry at 2,1 a 0.
P-1=[10-5-50015-15⋅10-15⋅01-15⋅-50-15⋅-51-15⋅00-15⋅0111001]
Step 3.4.2.2
Simplify R2.
P-1=[10-5-500002110111001]
P-1=[10-5-500002110111001]
Step 3.4.3
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Step 3.4.3.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
P-1=[10-5-5000021101-11-01+50+50-01-0]
Step 3.4.3.2
Simplify R3.
P-1=[10-5-500002110016501]
P-1=[10-5-500002110016501]
Step 3.4.4
Swap R3 with R2 to put a nonzero entry at 2,2.
P-1=[10-5-500016501002110]
Step 3.4.5
Multiply each element of R3 by 12 to make the entry at 3,3 a 1.
Step 3.4.5.1
Multiply each element of R3 by 12 to make the entry at 3,3 a 1.
P-1=[10-5-500016501020222121202]
Step 3.4.5.2
Simplify R3.
P-1=[10-5-50001650100112120]
P-1=[10-5-50001650100112120]
Step 3.4.6
Perform the row operation R2=R2-6R3 to make the entry at 2,3 a 0.
Step 3.4.6.1
Perform the row operation R2=R2-6R3 to make the entry at 2,3 a 0.
P-1=[10-5-5000-6⋅01-6⋅06-6⋅15-6(12)0-6(12)1-6⋅000112120]
Step 3.4.6.2
Simplify R2.
P-1=[10-5-5000102-3100112120]
P-1=[10-5-5000102-3100112120]
Step 3.4.7
Perform the row operation R1=R1+5R3 to make the entry at 1,3 a 0.
Step 3.4.7.1
Perform the row operation R1=R1+5R3 to make the entry at 1,3 a 0.
P-1=[1+5⋅00+5⋅0-5+5⋅1-5+5(12)0+5(12)0+5⋅00102-3100112120]
Step 3.4.7.2
Simplify R1.
P-1=[100-525200102-3100112120]
P-1=[100-525200102-3100112120]
P-1=[100-525200102-3100112120]
Step 3.5
The right half of the reduced row echelon form is the inverse.
P-1=[-525202-3112120]
P-1=[-525202-3112120]
Step 4
Use the similarity transformation to find the diagonal matrix D.
D=P-1AP
Step 5
Substitute the matrices.
[-525202-3112120][5202504-14][-15011501111]
Step 6
Step 6.1
Multiply [-525202-3112120][5202504-14].
Step 6.1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×3.
Step 6.1.2
Multiply each row in the first matrix by each column in the second matrix.
[-52⋅5+52⋅2+0⋅4-52⋅2+52⋅5+0⋅-1-52⋅0+52⋅0+0⋅42⋅5-3⋅2+1⋅42⋅2-3⋅5+1⋅-12⋅0-3⋅0+1⋅412⋅5+12⋅2+0⋅412⋅2+12⋅5+0⋅-112⋅0+12⋅0+0⋅4][-15011501111]
Step 6.1.3
Simplify each element of the matrix by multiplying out all the expressions.
[-15215208-12472720][-15011501111]
[-15215208-12472720][-15011501111]
Step 6.2
Multiply [-15215208-12472720][-15011501111].
Step 6.2.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×3.
Step 6.2.2
Multiply each row in the first matrix by each column in the second matrix.
[-152(-15)+152⋅15+0⋅1-152⋅0+152⋅0+0⋅1-152⋅1+152⋅1+0⋅18(-15)-12(15)+4⋅18⋅0-12⋅0+4⋅18⋅1-12⋅1+4⋅172(-15)+72⋅15+0⋅172⋅0+72⋅0+0⋅172⋅1+72⋅1+0⋅1]
Step 6.2.3
Simplify each element of the matrix by multiplying out all the expressions.
[300040007]
[300040007]
[300040007]