Linear Algebra Examples
A=[81]A=[81] , x=[3x+3y4x-y]x=[3x+3y4x−y]
Step 1
Write as an augmented matrix for x⋅x=[81]x⋅x=[81].
[3x+3y84x-y1][3x+3y84x−y1]
Step 2
Write as a linear system of equations.
8=3x+3y8=3x+3y
1=4x-y1=4x−y
Step 3
Step 3.1
Move variables to the left and constant terms to the right.
Step 3.1.1
Move all terms containing variables to the left side of the equation.
Step 3.1.1.1
Subtract 3x3x from both sides of the equation.
8-3x=3y8−3x=3y
1=4x-y1=4x−y
Step 3.1.1.2
Subtract 3y3y from both sides of the equation.
8-3x-3y=08−3x−3y=0
1=4x-y1=4x−y
8-3x-3y=08−3x−3y=0
1=4x-y1=4x−y
Step 3.1.2
Subtract 88 from both sides of the equation.
-3x-3y=-8−3x−3y=−8
1=4x-y1=4x−y
Step 3.1.3
Move all terms containing variables to the left side of the equation.
Step 3.1.3.1
Subtract 4x4x from both sides of the equation.
-3x-3y=-8−3x−3y=−8
1-4x=-y1−4x=−y
Step 3.1.3.2
Add yy to both sides of the equation.
-3x-3y=-8−3x−3y=−8
1-4x+y=01−4x+y=0
-3x-3y=-8−3x−3y=−8
1-4x+y=01−4x+y=0
Step 3.1.4
Subtract 11 from both sides of the equation.
-3x-3y=-8−3x−3y=−8
-4x+y=-1−4x+y=−1
-3x-3y=-8−3x−3y=−8
-4x+y=-1−4x+y=−1
Step 3.2
Write the system as a matrix.
[-3-3-8-41-1][−3−3−8−41−1]
Step 3.3
Find the reduced row echelon form.
Step 3.3.1
Multiply each element of R1R1 by -13−13 to make the entry at 1,11,1 a 11.
Step 3.3.1.1
Multiply each element of R1R1 by -13−13 to make the entry at 1,11,1 a 11.
[-13⋅-3-13⋅-3-13⋅-8-41-1][−13⋅−3−13⋅−3−13⋅−8−41−1]
Step 3.3.1.2
Simplify R1R1.
[1183-41-1][1183−41−1]
[1183-41-1][1183−41−1]
Step 3.3.2
Perform the row operation R2=R2+4R1R2=R2+4R1 to make the entry at 2,12,1 a 00.
Step 3.3.2.1
Perform the row operation R2=R2+4R1R2=R2+4R1 to make the entry at 2,12,1 a 00.
[1183-4+4⋅11+4⋅1-1+4(83)]⎡⎢⎣1183−4+4⋅11+4⋅1−1+4(83)⎤⎥⎦
Step 3.3.2.2
Simplify R2R2.
[118305293]⎡⎣118305293⎤⎦
[118305293]⎡⎣118305293⎤⎦
Step 3.3.3
Multiply each element of R2R2 by 1515 to make the entry at 2,22,2 a 11.
Step 3.3.3.1
Multiply each element of R2R2 by 1515 to make the entry at 2,22,2 a 11.
[118305552935]⎡⎢⎣118305552935⎤⎥⎦
Step 3.3.3.2
Simplify R2R2.
[1183012915]⎡⎣1183012915⎤⎦
[1183012915]⎡⎣1183012915⎤⎦
Step 3.3.4
Perform the row operation R1=R1-R2R1=R1−R2 to make the entry at 1,21,2 a 00.
Step 3.3.4.1
Perform the row operation R1=R1-R2R1=R1−R2 to make the entry at 1,21,2 a 00.
[1-01-183-2915012915]⎡⎣1−01−183−2915012915⎤⎦
Step 3.3.4.2
Simplify R1R1.
[101115012915]⎡⎣101115012915⎤⎦
[101115012915]⎡⎣101115012915⎤⎦
[101115012915]⎡⎣101115012915⎤⎦
Step 3.4
Use the result matrix to declare the final solution to the system of equations.
x=1115x=1115
y=2915y=2915
Step 3.5
Write a solution vector by solving in terms of the free variables in each row.
[xy]=[11152915][xy]=[11152915]
Step 3.6
Write as a solution set.
{[11152915]}{[11152915]}
{[11152915]}{[11152915]}