Linear Algebra Examples
A=[-22-2-101]A=⎡⎢⎣−22−2−101⎤⎥⎦ , x=[-120-4]x=⎡⎢⎣−120−4⎤⎥⎦
Step 1
Write as an augmented matrix for Ax=[-120-4]Ax=⎡⎢⎣−120−4⎤⎥⎦.
[-22-12-2-1001-4]⎡⎢
⎢⎣−22−12−2−1001−4⎤⎥
⎥⎦
Step 2
Step 2.1
Multiply each element of R1R1 by -12−12 to make the entry at 1,11,1 a 11.
Step 2.1.1
Multiply each element of R1R1 by -12−12 to make the entry at 1,11,1 a 11.
[-12⋅-2-12⋅2-12⋅-12-2-1001-4]⎡⎢
⎢⎣−12⋅−2−12⋅2−12⋅−12−2−1001−4⎤⎥
⎥⎦
Step 2.1.2
Simplify R1.
[1-16-2-1001-4]
[1-16-2-1001-4]
Step 2.2
Perform the row operation R2=R2+2R1 to make the entry at 2,1 a 0.
Step 2.2.1
Perform the row operation R2=R2+2R1 to make the entry at 2,1 a 0.
[1-16-2+2⋅1-1+2⋅-10+2⋅601-4]
Step 2.2.2
Simplify R2.
[1-160-31201-4]
[1-160-31201-4]
Step 2.3
Multiply each element of R2 by -13 to make the entry at 2,2 a 1.
Step 2.3.1
Multiply each element of R2 by -13 to make the entry at 2,2 a 1.
[1-16-13⋅0-13⋅-3-13⋅1201-4]
Step 2.3.2
Simplify R2.
[1-1601-401-4]
[1-1601-401-4]
Step 2.4
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
Step 2.4.1
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
[1-1601-40-01-1-4+4]
Step 2.4.2
Simplify R3.
[1-1601-4000]
[1-1601-4000]
Step 2.5
Perform the row operation R1=R1+R2 to make the entry at 1,2 a 0.
Step 2.5.1
Perform the row operation R1=R1+R2 to make the entry at 1,2 a 0.
[1+0-1+1⋅16-401-4000]
Step 2.5.2
Simplify R1.
[10201-4000]
[10201-4000]
[10201-4000]
Step 3
Write the matrix as a system of linear equations.
x=2
y=-4
0=0
Step 4
Write the solutions as a set of vectors.
{[2-4]}